Induction Proofs

There are several versions of induction, which are all actually equivalent if you dig into them a bit. The most common version assumes the claim for n (perhaps for $n \geq 0$) and proves it for $n+1$. It is also OK to assume for $n-1$ and prove for n (perhaps for $n \geq 1$). You can choose either of these, whichever seems to make the notation cleaner.

The strong form of induction assumes the claim for all $k \leq n$ and proves it for $n+1$. Or for $k<n$ and proves it for n. Use the strong form when the claim for n is not directly related to the claim for $n-1$ (rather, to some earlier claim such as the one for $n-2$ or $n / 2$, etc).

Exercise 7.3b: Show that f_{n} is divisible by 3 if and only if n is divisible by 4 .

Proof: Taking a hint from the answer key, and the formula from 7.3a, we get $f_{n}=2 f_{n-2}+f_{n-3}=3 f_{n-3}+2 f_{n-4}$ (since $f_{n-2}=f_{n-3}+f_{n-4}$). This shows f_{n} is divisible by 3 iff f_{n-4} is divisible by 3 . We can finish by induction (strong form) on n.

Basis Step: Note that $f(0)=0$ is div by 4 , but $f(1)=1$ and $f(2)=1$ $f(3)=2$ are not. So, the claim is true for all $n \leq 3$. [notice that this basis step includes 4 cases instead of just 1 ; that's because we plan to use the strong form, and to refer to $n-4$ later on]

Induction Step: Fix $n \geq 4$. Assume the claim is true for all $0 \leq k<n$ [this is the induction hypothesis; strong form]. We must prove the claim for n. There are two cases. 1) If n is divisible by 4 , then so is $k=n-4$, and $k \geq 0$, so we can apply the IH . So, f_{n-4} is divisible by 3 . From paragraph 1 , this shows f_{n} is too. If n is not divisible by 4 , then neither is $k=n-4$. By the IH, f_{n-4} is not divisible by 3 . From paragraph 1 , this shows f_{n} is not either.

Exercise 7.19e): Solve [and prove] $h_{n}=2 h_{n-1}+1$ for $n \geq 1$ with $h_{0}=1$.
Solution: $h_{1}=3, h_{2}=7, h_{3}=15, h_{4}=31$ etc. Apparently, these are all close to a power of 2 . The pattern seems to be $h_{n}=2^{n+1}-1$.

Proof by induction: basis step: We have already checked the pattern holds for $0 \leq n \leq 4$ [really, we only need to mention $n=0$ here].

Induction Step: Assume the claim is true for $n-1$, and we will prove it for n. So, plugging into the recurrence relation, $h_{n}=2 h_{n-1}+1=$ $2\left[2^{n-1-1}-1\right]+1=2^{n-1}-1$ which proves the claim for n.

