Induction Proofs

There are several versions of induction, which are all actually equivalent if you dig into them a bit. The most common version assumes the claim for n (perhaps for $n \ge 0$) and proves it for n + 1. It is also OK to assume for n - 1 and prove for n (perhaps for $n \ge 1$). You can choose either of these, whichever seems to make the notation cleaner.

The strong form of induction assumes the claim for all $k \leq n$ and proves it for n + 1. Or for k < n and proves it for n. Use the strong form when the claim for n is not directly related to the claim for n - 1 (rather, to some earlier claim such as the one for n - 2 or n/2, etc).

Exercise 7.3b: Show that f_n is divisible by 3 if and only if n is divisible by 4.

Proof: Taking a hint from the answer key, and the formula from 7.3a, we get $f_n = 2f_{n-2} + f_{n-3} = 3f_{n-3} + 2f_{n-4}$ (since $f_{n-2} = f_{n-3} + f_{n-4}$). This shows f_n is divisible by 3 iff f_{n-4} is divisible by 3. We can finish by induction (strong form) on n.

Basis Step: Note that f(0) = 0 is div by 4, but f(1) = 1 and f(2) = 1f(3) = 2 are not. So, the claim is true for all $n \leq 3$. [notice that this basis step includes 4 cases instead of just 1; that's because we plan to use the strong form, and to refer to n - 4 later on]

Induction Step: Fix $n \ge 4$. Assume the claim is true for all $0 \le k < n$ [this is the induction hypothesis; strong form]. We must prove the claim for n. There are two cases. 1) If n is divisible by 4, then so is k = n - 4, and $k \ge 0$, so we can apply the IH. So, f_{n-4} is divisible by 3. From paragraph 1, this shows f_n is too. If n is not divisible by 4, then neither is k = n - 4. By the IH, f_{n-4} is not divisible by 3. From paragraph 1, this shows f_n is not divisible by 3. From paragraph 1, this shows f_n is not divisible by 3. From paragraph 1, this shows f_n is not divisible by 3.

Exercise 7.19e): Solve [and prove] $h_n = 2h_{n-1} + 1$ for $n \ge 1$ with $h_0 = 1$.

Solution: $h_1 = 3, h_2 = 7, h_3 = 15, h_4 = 31$ etc. Apparently, these are all close to a power of 2. The pattern seems to be $h_n = 2^{n+1} - 1$.

Proof by induction: basis step: We have already checked the pattern holds for $0 \le n \le 4$ [really, we only need to mention n = 0 here].

Induction Step: Assume the claim is true for n - 1, and we will prove it for n. So, plugging into the recurrence relation, $h_n = 2h_{n-1} + 1 = 2[2^{n-1}-1] + 1 = 2^{n-1} - 1$ which proves the claim for n.