Correction to an example from class today
Example (similar to Ch.9.1, ex.5) Compute the Laplace transform of

$$
f(t)= \begin{cases}\mathrm{t} & \text { if } 0<t<3 \\ 4 & \text { if } t \geq 3\end{cases}
$$

Solution: $L(f)=\int_{0}^{3} e^{-s t} t d t+\int_{3}^{\infty} e^{-s t} 4 d t=A+B$, where we compute A using I.B.P.:
$A=\left.\frac{e^{-s t} t}{-s}\right|_{0} ^{3}+\int_{0}^{3} \frac{e^{-s t}}{s} d t=\frac{-3 e^{-3 s}}{s}-\left.\frac{e^{-s t}}{s^{2}}\right|_{0} ^{3}=\frac{-3 e^{-3 s}}{s}-\frac{e^{-3 s}-1}{s^{2}}$ and
$B=\left.4 \frac{e^{-s t}}{-s}\right|_{3} ^{\infty}=4 \frac{e^{-3 s}}{s}$ for $s>0$ (taking a naughty shortcut with the improper integral).
So, the answer is $\frac{e^{-3 s}}{s}+\frac{1-e^{-3 s}}{s^{2}}$, for $s>0$.
In class, I had s instead of s^{2} in the denominator, probably from some earlier mistake, or miscopying.

