1) [20 pts] a) Show that the $\mathrm{DE},\left(\frac{d y}{d x}\right)^{2}-4 y=0$, has a one-parameter family of solutions of the form $y=(x+c)^{2}$.
b) Is this the general solution? Briefly justify.
c) Does this DE have a unique solution such that $y(1)=1$? Briefly justify.
2) $[20 \mathrm{pts}]$ Find the orthogonal trajectories to this family of curves; $y^{2}=c x$.
3) [15 pts] Which of the following are fundamental sets for $y^{\prime \prime}+y=0$? For each list answer yes or no and explain briefly. You should not have to compute any $\mathrm{W}(\mathrm{x})$.
a) $\{\sin (x), x \sin (x)\}$
b) $\{\sin (x), \sin (-x)\}$
c) $\{\sin (x), \cos (x+2)\}$
4) $[20 \mathrm{pts}]$ Solve $(x+y) d x-x d y=0$.
5) [15 pts] Consider $\frac{d y}{d x}+\frac{y}{2 x}=\frac{x}{y^{3}}$. What type of DE is this? Use Ch2 language, such as exact, separable, etc. Show the first step of the solution (for example, set $y=$ something or $\mu=$ something, etc), to show that you know the usual method, but you do not have to solve it.
6) $[10 \mathrm{pts}]$ Consider $(5 x+2 y+1) d x+(2 x+y+1) d y=0$. Show the first step of the solution, but you do not have to solve it.

Bonus) [10 pts] Solve the IVP, $\frac{d y}{d x}+y=f(x)$, where $f(x)= \begin{cases}5, & \text { if } 0 \leq x<10 \\ 1, & \text { if } x>10 .\end{cases}$
Added $9 / 24 / 15:$ with $y(0)=6$.

Remarks and Answers: The average score among the top 22 was approx 66 out of 100 (or 110 counting the bonus), with high scores of 99 and 95 . The average grade varied from about 45% on problem 1 to 95% on problem 6 . The advisory scale, probably more accurate than the one on the syllabus is:

$$
\begin{aligned}
& \text { A's } 75 \text { to } 100 \\
& \text { B's } 65 \text { to } 74 \\
& \text { C's } 55 \text { to } 64 \\
& \text { D's } 45 \text { to } 54
\end{aligned}
$$

1a) [10pts] $\left(\frac{d y}{d x}\right)^{2}=(2(x+c))^{2}$ and $4 y=4(x+c)^{2}$ is equal to that.
This is Ch 1.2 .7 b , an assigned HW. Don't try to solve this DE (which doesn't fit the EU theorem or any basic Ch2 type), but if you do, watch for \pm issues. For example, $\sqrt{y}=x+c$ incorrectly implies $x+c \geq 0$. The results on 1 a were better than 1 b and 1 c .

On problems like 1b and 1c, you have to at least answer Yes or No correctly for any credit. Also, "justify" requires at least a few words.
1b) No. The solution $y=0$ is not included in the formula $y=(x+c)^{2}$.
1c) No, it has two, $y=x^{2}$ and $y=(x-2)^{2}$. These are easy to find by solving for c.
2) $y^{2} / 2+x^{2}=k$. Start with $2 y \frac{d y}{d x}=c=y^{2} / x$, so $\frac{d y}{d x}=y / 2 x$ is the first DE. The second is $\frac{d y}{d x}=-2 x / y$, which is separable, with solutions $y^{2} / 2+x^{2}=k$. Be careful with the constants in these problems. Probably $y=\sqrt{c x}$ is a slightly bad start, though a few people got the correct answer that way.

3a) No. $x \sin (x)$ does not satisfy the DE because (shortcut) it does not fit the general solution $c_{1} \sin (x)+c_{2} \cos (x)$.
3b) No. Since $\sin (-x)=-\sin (x)$ is a scalar multiple of the first solution, these are LD.
3c) Yes, these are both solutions and are not scalar multiples, so they are LI. [Reminder: this logic does not apply with more than two functions.]
4) $y=x \ln (x)+c x$. This DE is homogeneous (in the Ch2 sense). So, $d y / d x=1+y / x$ becomes $v+x d v / d x=1+v, v=\ln (x)+c$, so $y=x \ln (x)+c x$. I strongly suggest checking your answer to such problems. Also, a few people came close to the answer, but their work was indecipherable, so they did not get full credit. If you are not too confused, it only takes a few seconds to write "homogeneous" and organize your work a little.

There are other approaches. The DE is also linear. It also fits a theorem in Ch 2.4 (the one with M_{y} etc).
5) It is the Bernoulli type with $n=-3$, so set $v=y^{1-n}=y^{4}$, and you can stop here. I did not consider finding the type to be a step.
6) This is from the Ch 2.4 HW. The first step is to set $x=X+h$ and $y=Y+k$.

It is also exact (which I did not notice when writing the exam). For that, the first step is $F(x, y)=\int 5 x+2 y+1 d x=$ etc.
B) There was a typo, sorry. Since it is an IVP, it should have an initial condition, such as $y(0)=6$ (see the corrected version above, which is Ch 2.3.28). Apparently nobody noticed this, though a few people got pretty far into the solution anyway, and I gave them full credit. Since this is linear, we can use $\mu=\exp \left(\int 1 d x\right)=e^{x}$ and the shortcut $y=e^{-x} \int e^{x} Q(x) d x$. Now there are two possible methods.

1) Set $Q(x)=5$ and get $y=5+C e^{-x}$ for $0 \leq x \leq 10$. With the missing IC $y(0)=6$, we would get $C=1$ and $y(10)=5+e^{-10}$. Use this last equation as an initial condition for a second IVP. Similar work leads to $y=1+C_{2} e^{-x}$ and $C_{2}=\left[4 e^{10}+1\right]$, for $x>10$.

Remark: This answer is not differentiable at $x=10$, but pro's do not find that very disturbing, and have found ways to work with it (eg, the theory of distributions).
2) Or, we could set $Q=f$ though the integration seems a bit awkward, so I prefer method 1.

