1) Rewrite (99.5)(98.5)(97.5)(96.5)(95.5) using Gamma function(s).
2) Find and solve the indicial equation for this DE , at the singular point $x_{0}=0$. You do not have to solve the DE :

$$
3 x y^{\prime \prime}-(x-2) x y^{\prime}-2 y=0
$$

3) Find two LI series solutions to Ex.6.5 from Ch $6.1, y^{\prime \prime}+x y^{\prime}+\left(x^{2}+2\right) y=0$. To save time, the main formulas from the first phase are

$$
\begin{aligned}
& 2 c_{0}+2 c_{2}=0, \quad 3 c_{1}+6 c_{3}=0, \quad \text { and } \\
& (n+2)(n+1) c_{n+2}+(n+2) c_{n}+c_{n-2}=0, \text { for } n \geq 2
\end{aligned}
$$

4) Find the first two nonzero terms of the McLaurin series (the series centered at 0) for this function

$$
f(x)=\frac{2 x+4 x^{2}+6 x^{3}+\ldots}{1+3 x+5 x^{2}+\ldots}
$$

5) Compute the Laplace transform $L\left\{e^{2 t} \sin (t)\right\}$. You may use a memorized formula from Table 9.1 to save time, but if so, state the formula that you are using (this also applies to problems below).
6) Compute the inverse Laplace transform $L^{-1}\left\{\frac{1}{(s+2)(s+3)}\right\}$ using partial fractions.
7) Compute the convolution $h(t)=f * g(t)$, where $f(t)=e^{5 t}$ and $g(t)=e^{2 t}$. Then find the Laplace transform $L\{h(t)\}$.
8) Start solving this IVP using the Laplace transform, but stop when you have a formula for $Y(s)$. You do not have to use partial fractions or a convolution, etc.

$$
y^{\prime \prime}-2 y^{\prime}-8 y=0, y(0)=3, y^{\prime}(0)=6
$$

9) [20 pts] Answer each with True or False.

At an ordinary point x_{0} of a standard Ch. 6 DE , there is a power series solution that converges for some $x \neq x_{0}$.

We can get the series for $J_{-p}(x)$ by substituting $-p$ for p in the series for $J_{p}(x)$.
For all $x>0,\left[J_{0}(x)\right]^{2}+\left[Y_{0}(x)\right]^{2}=1$
$f(t)=e^{4 t} \sin (t)+2^{t}$ has exponential order.
If f is a positive bounded continuous function, then $\mathrm{L}(\mathrm{f})$ is also positive.
Bonus) [5 pts] State (or derive) line 13 of Table 9.1, related to $\frac{1}{\left(s^{2}+b^{2}\right)^{2}}$.

Remarks and Answers: The average among the top half was $60 / 100$, with highs of 85 and 73 . The results were poor on problems 1 and 2 , stronger on problem 6 . The scale for the exam is:

$$
\begin{aligned}
& \text { A's } 70-100 \\
& \text { B's } 60-69 \\
& \text { C's } 50-59 \\
& \text { D's } 40-49
\end{aligned}
$$

The exam average for the semester is approx 63 with this scale:

$$
\begin{aligned}
& \text { A's } 71-100 \\
& \text { B's } 61-70 \\
& \text { C's } 51-60 \\
& \text { D's } 41-50
\end{aligned}
$$

1) $\frac{\Gamma(100.5)}{\Gamma(95.5)}$. This is similar to the formula $7 \cdot 6 \cdot 5=\frac{7!}{4!}$. Another possible answer is $\frac{99.5!}{94.5!}$, except for the instructions to use Gamma functions.
2) $3 r(r-1)$ with roots 1,0 (Solution corrected on $4 / 11 / 16$. The question was supposed to match ex.6.2.11). There seemed to be much confusion about what to do. I gave partial credit for writing down r somewhere, but roughly half did not do that.
3) $c_{0}\left(1-x^{2}+x^{4} / 4+\cdots\right)+c_{1}\left(x-x^{3} / 2+3 x^{5} / 40 \cdots\right)$. Use the given info to get $c_{2}=-c_{0}$, $c_{4}=c_{0} / 4$, etc.
4) $2 x-2 x^{2}+\cdots$ Very few people got anywhere on this one. Review how to divide polynomials from your Precalculus or Calculus books (see the chapters on partial fractions and/or power series).
5) Translate the transform of $\sin (t)$ to get $\frac{1}{(s-2)^{2}+1}$. You can quote the Table instead, if you remember it.
6) P.F's lead to $\frac{1}{s+2}-\frac{1}{s+3}$, so the transform is $e^{-2 t}-e^{-3 t}$.
7) The convolution is $\left[e^{5 t}-e^{2 t}\right] / 3$.

The transform is $\left[\frac{1}{s-5}-\frac{1}{s-2}\right] / 3$. I slightly prefer using the convolution theorem, which gives $\frac{1}{s-5} \cdot \frac{1}{s-2}$, which is the same thing.

If you could not compute the convolution directly, you could take the inverse transform of $\frac{1}{s-5} \cdot \frac{1}{s-2}$ (using P.F's).
8) $Y(s)=\frac{3 s}{s^{2}-2 s-8}$
9) TTFTT

