Name

Show all your work and reasoning for maximum credit. If you continue your work on another page, be sure to leave a note. Do not use a calculator, book, or any personal paper. You may ask about any ambiguous questions or for extra paper. If you use extra paper, hand it in with your exam.

1A) (10pts) Solve the DE: $\left(x^{2}-3 y^{2}\right) d x+2 x y d y=0$.

1B) (10pts, Ex. 4.37) Begin the UC method of solving the DE. Write down the correct form of y_{p} [with an A and a B (etc), but do not solve for A (etc)].

$$
y^{\prime \prime}-3 y^{\prime}+2 y=2 x^{2}+e^{x}+2 x e^{x}+4 e^{3 x}
$$

1C) (10pts, Ex 4.16) Check that $y=x$ is a solution of $\left(x^{2}+1\right) y^{\prime \prime}-2 x y^{\prime}+2 y=0$, and find another LI solution by reducing the order.
2) (10pts) Given that $x=0$ is a regular singular point of the equation

$$
x y^{\prime \prime}+y^{\prime}+2 y=0
$$

a) find the roots of the indicial equation.
b) Show the general form of the solutions. [You do not have to solve the DE to do this, if you remember Thm 6.3].
3) (10pts) Choose ONE proof. Explain thoroughly.
a) Thm 9.8: $L\{f * g\}=L\{f\} L\{g\}$.
b) Thm 9.9: $L\left\{u_{a}(t) f(t-a)\right\}=e^{-a s} F(s)$
4) (15pt) Answer with True or False.

If f is a positive function, then $L(f)$ is also positive.
If f is a continuous function, then $\mathrm{L}(\mathrm{f})$ is also continuous.
If f is periodic then $\mathrm{L}(\mathrm{f})$ is periodic.
The inverse LT of Y cannot have two different answers.
At an ordinary point x_{0} of the usual DE , there is a power series solution that converges for some $x \neq x_{0}$.
5) (10pts, ex: 3.2.1) A stone weighing 4 lb falls from rest from a great height. As it falls, it is acted on by air resistance that is numerically equal to $v / 2$, where v is velocity. Find the velocity and distance fallen at time t.

Set up the appropriate initial value problem, but do not solve.
6) (10pts, ex: 9.5.1) Solve the system using the Laplace transform:

$$
\begin{aligned}
& x^{\prime}+y=3 e^{2 t} \\
& y^{\prime}+x=0 \\
& x(0)=2, \quad y(0)=0
\end{aligned}
$$

7) (10pts, Ex: 9.22) Find the inverse Laplace transform of the function below (small hints included, but you'll need to find A):

$$
\frac{s^{2}+5 s-3}{(s+2)(s-1)^{2}}=\frac{A}{s+2}+\frac{B}{s-1}+\frac{C}{(s-1)^{2}} \text { where } \quad A=? ?, \quad B=2, \quad C=1
$$

8) (5pts, ex: 9.4.3) Find the Laplace transform of this piecewise-defined function: $f(t)=4$ if $0<t<6$ and $f(t)=0$ if $t>6$.
