NAME

Show all your work and reasoning for maximum credit. If you continue your work on the back/etc, leave me a note. Do not use a calculator, book, or any personal paper. If you need extra paper, ask me, and then hand it in with your exam.

1) $[8 \mathrm{pts}]$ Find the general solution, $y^{\prime}=\frac{y}{x}-\frac{y^{2}}{x}$.
2) [10pts] Solve the Cauchy-Euler I.V.P for $x>0: x^{2} y^{\prime \prime}-2 y=8, y(1)=0, y^{\prime}(1)=5$. You may be able to guess a very simple y_{p}.
3) $[6 \mathrm{pts}]$ Solve the I.V.P. $(2 x y-3) d x+\left(x^{2}+4 y\right) d y=0, \quad y(1)=2$.
4) [6pts] Use the 'UC' method to find a particular solution of the first order DE: $y^{\prime}-y=$ $x \sin x$. Hints: the method is the same as for second order DEs, $y_{c}=c e^{x}$, and the UC set of $x \sin x$ is $\{x \sin x, x \cos x, \sin x, \cos x\}$.
5) [5pts] Are you most confident of your answer to (2), (3) or (4) above ? Check that answer carefully below, showing all work.
6) $[8 \mathrm{pts}]$ Find a series solution to the I.V.P: $y^{\prime \prime}=2 x y, y(0)=1, y^{\prime}(0)=0$. Find the first 3 nonzero terms.
7) [10 pts$]$ Answer True or False. You do not have to explain, unless you think the problem is ambiguous.
In class, we discussed Leibniz and Euler more than Newton and Cauchy.
If f and g are L.I. solutions of a Cauchy-Euler equation on $(-\infty, \infty)$, then $W(f, g)(x) \neq 0$ for all x.
Solutions in Ch.5.2 (free undamped motion) often take the form $x=c \tan \left(\sqrt{\frac{k}{m}} t+\phi\right)$.
The only solution to $y^{\prime}=x^{2} y^{2}$ with $y(0)=0$ is the trivial one, $y(x) \equiv 0$.
One fundamental set of solutions of $y^{(4)}-y=0$ (a 4th order linear DE) is $\{\sin x, \cos x\}$.
8) [7pts] Ex.6.14 uses the method of Frobenius on $x^{2} y^{\prime \prime}+\left(x^{2}-3 x\right) y^{\prime}+3 y=0$. The indicial equation is $r^{2}-4 r+3=0$. The first solution is a power series that simplifies to $y_{1}(x)=x^{3} e^{-x}$. Note that you can easily write y_{1} and $\frac{1}{y_{1}}$ as series, if needed. Use reduction of order to find a second LI solution $y_{2}(x)$, which is a series plus a term with $\ln (x)$. To save time, you only have to find the first term of the series part (and then the $\ln x$ part).
9) [5pts] Compute the first 3 terms of the series for $\left[1+3 x+5 x^{2}+7 x^{3}+\cdots\right]^{-2}$.
10) [8pts] Choose ONE proof (these require relatively little explanation, but try to justify most of the steps). For maximum credit, avoid bad notation such as $\left.f(x)\right|_{0} ^{\infty}$ in your work.
a) $L\left(f^{\prime}\right)=s L(f)-f(0)$ (assume f is nice, and s is large enough)
b) $\Gamma(N+1)=N \Gamma(N)$ for $N>0$ (not necessarily an integer).
11) [7 pts$]$ Start solving this system using the Laplace transform. You can stop when you have an explicit formula for $L(x)$.

$$
\begin{aligned}
& x^{\prime}-4 x+2 y=2 t \\
& y^{\prime}-8 x+4 y=1 \\
& x(0)=3, y(0)=5
\end{aligned}
$$

12) [5pts] Find $L(f)$ using the u_{a} method (other methods get partial credit up to 4 points).

$$
f(t)= \begin{cases}2 & \text { if } 0<t<3 \\ 0 & \text { if } 3<t<6 \\ 2 & \text { if } t>6\end{cases}
$$

13) [5pts] Find $L(2+\delta(t-3))$.
14) [5pts] Find $L^{-1}(F)$, if $F(s)=\frac{6 s}{\left(s^{2}+9\right)^{2}}$. This assumes you know the Table. If not, convolution or integrating $F(s)$ might help.
15) [5pts] Find $L^{-1}(F)$, if $F(s)=\frac{10 s}{(s+3)\left(s^{2}+1\right)}$. Any valid method is OK, but PF's are suggested.

Bonus) [5pts] Given the matrix hints below, find the general solution $(x(t), y(t))$ of the system, $\quad x^{\prime}=x+y, \quad y^{\prime}=2 x$.

$$
\left(\begin{array}{ll}
1 & 1 \\
2 & 0
\end{array}\right)\binom{1}{1}=\binom{2}{2} \quad \text { and } \quad\left(\begin{array}{ll}
1 & 1 \\
2 & 0
\end{array}\right)\binom{1}{-2}=\binom{-1}{2}
$$

Remarks and Answers: The average was approx 62, with high scores of 90 and 84. The best results were on $\# 3$ (about 90%), while the worst were on $\# 8$ (about 35%), then $\# 5$ and \#9 (about 45\%). I do not usually set an explicit scale for finals, though the semester grades will be scaled.

1) $\left|\frac{y}{y-1}\right|=C|x|$, though there are several equivalent forms of this answer, and I considered the absolute values optional. Since this is Bernoulli, you can set $v=y^{-1}$. It is also separable. A few people set $y=v x$ (though the DE is not homogeneous) and got the right answer. Many people made careless errors.
2) You can set $x=e^{t}$ as in the text, or $y=x^{r}$ instead, getting $y_{c}=c_{1} x^{2}+c_{2} x^{-1}$. You can probably guess $y_{p}=-4$ (if not, use UC). The IC's give $y=3 x^{2}+x^{-1}-4$ (note that $\left.y(1)=c_{1}+c_{2}-4=0\right)$.

The most common mistakes were about organization (such as including the 8 while looking for y_{c}, or forgetting to use the 8 at all, or using the IC's before finding y_{p}).
3) It is exact, so $F(x, y)=\int 2 x y-3 d x=x^{2} y-3 x+C(y)$ with $C(y)=2 y^{2}$. Ans: $x^{2} y-3 x+2 y^{2}=7$ (do not include the letter F in your answer).
4) Starting with $y=A x \cos x+B x \sin x+C \cos x+D \sin x$, the $D E$ gives a 4 x 4 system. Get $y=-\frac{1}{2} x \cos x-\frac{1}{2} x \sin x-\frac{1}{2} \cos x$.

Do not include $+c e^{x}$ into the final answer, since the problem asks only for a particular solution. The formula for y_{c} is not used, except to check that we don't need to adjust the UC set.
5) I will check Problem (2); $y=3 x^{2}+x^{-1}-4$ and $y^{\prime}=6 x-x^{-2}$ and $y^{\prime \prime}=6+2 x^{-3}$. Then $D(y)=6 x^{2}+2 x^{-1}-2\left[3 x^{2}+x^{-1}-4\right]=8$. And $y(1)=3+1-4=0$ and $y^{\prime}(1)=6-1=5$ so it all checks.
6) $1+\frac{x^{3}}{3}+\frac{x^{6}}{45}+\cdots$. The recurrence relation is $c_{n+2}=\frac{2 c_{n-1}}{(n+1)(n+2)}$.
7) TFFTF Note that the Wronskian theorem does not apply to CE eqns if the domain includes $x=0$.
8) $y_{2}=\frac{1}{2} x^{3} e^{-x} \ln x+[-x / 2+\cdots]$ Start with $y_{2}=y_{1} \int \exp \left(-\int(1-3 / x)\right) \cdot y_{1}^{-2} d x=$ $y_{1} \int x^{-3} e^{x}$. Write $x^{-3} e^{x}=x^{-3}+x^{-2}+x^{-1} / 2+\cdots$ as a series, integrate it, then multiply by $y_{1} \approx x^{3}$.
9) $1-6 x+17 x^{2} \cdots$. I'd start with squaring, to get $1+6 x+19 x^{2} \cdots$ and then divide that into 1. Or you can invert first, $1-3 x+4 x^{2} \cdots$ and then square. These are Calc 2 skills used in Ch 6.2-6.3.
10) See the text or lecture notes. Almost everyone chose the advertised part A.
11) $X(s)=\frac{3 s^{3}+2 s^{2}+8}{s^{4}}$ and you can stop there.
12) $\frac{2}{s}\left[1-e^{-3 s}+e^{-6 s}\right]$
13) $2 / s+e^{-3 s}$
14) $t \sin (3 t)$
15) $-3 e^{-3 t}+3 \cos (t)+\sin (t)$
B) One is $x(t)=e^{2 t}, \quad y(t)=e^{2 t}$. Another is $x(t)=e^{-t}, \quad y(t)=-2 e^{-t}$. Then take LC.

