This should take about 15 minutes (but it took 20-25), with a lecture afterwards.

1) [50 pts] Given that $y=(x+1)$ solves the $\mathrm{DE}(x+1)^{2} y^{\prime \prime}-3(x+1) y^{\prime}+3 y=0$, find a second L.I. solution.
2) [50 pts] Find the general solution using variation of parameters: $y^{\prime \prime}+y=\tan ^{2}(x)$.

Bonus [5 points]: Check that your answer to part (2) solves the D.E.

Remarks and Answers: The average was about $65 / 100$ based on the top half, with high scores of 98,95 and 85 . This is a bit low, but in the normal range. The unofficial scale is

$$
\begin{aligned}
& \text { A's } 77 \text { to } 100 \\
& \text { B's } 65 \text { to } 76 \\
& \text { C's } 55 \text { to } 64 \\
& \text { D's } 45 \text { to } 54
\end{aligned}
$$

1) You are given one solution, and are expected to use reduction of order to find a second one. So, $y=v \cdot(x+1)$ leads to $(x+1) v^{\prime \prime}-v^{\prime}=0$ or $(x+1) w^{\prime}-w=0$ which is separable. Get $|w|=C|x+1|$ or (safely ignoring absolute values and constants) just $w=x+1$, so $v=(x+1)^{2}$ (it's also OK to use $v=x^{2} / 2+x$, etc). So $y=(x+1)^{3}$. It is easy to check this is LI and is a solution.

The above explanation follows the method of Ex 4.16. A couple of people used the formula from Thm 4.7 Conclusion 2 instead, and got the same v.

You could treat this like a Cauchy-Euler DE, instead, and set $x+1=e^{t}$, etc.
There is a slight problem with the textbook here (see Conclusion 3 and answers to the exercises). The general solution is NOT $c_{1}(x+1)+c_{2}(x+1)^{3}$. For example, $y(x)=|x+1|^{3}$ is a solution to this problem that does not fit that pattern. This is probably not a very serious issue and may be understood by simply graphing the solutions.
2) $y_{p}=v_{1}(x) \sin (x)+v_{2}(x) \cos (x)=\sin (x) \ln |\sec x+\tan x|-2$. You should get y_{c} easily from memory and add it in at the end. You can plug into the usual formulas to get

$$
\begin{gathered}
v_{1}=-\int \frac{F y_{2}}{a_{0} W} d x=-\int \frac{\tan ^{2}(x) \cos (x)}{-1} d x=\ln |\sec x+\tan x|-\sin (x) \\
v_{2}=\int \frac{F y_{1}}{a_{0} W} d x=\int \frac{\tan ^{2}(x) \sin (x)}{-1} d x=-\sec x-\cos x
\end{gathered}
$$

If you got stuck here, you may need to practice integration or basic trig identities. This was exercise 4.4.2 and was done in class.
B) From $y=\sin x \ln |\sec x+\tan x|-2$, get $y^{\prime}=\sin x \sec x+\cos x \ln |\sec x+\tan x|$ and $y^{\prime \prime}=\sec ^{2} x-\sin x \ln |\sec x+\tan x|+1$. So $y^{\prime \prime}+y=\sec ^{2} x-1=\tan ^{2} x$. Check!

