Grading HW 3 and partial key - Feb 14, 2011 - S Hudson

Note from Feb 2, 2014: I don't recall 2011 very well, but apparently I was grading HW back then, at least briefly. We were using a different edition of our text then, so I have edited this page slightly for that. Probably the grading system is of little interest, but the answers below may be worthwhile.

15 points $=$ did you try Ch 1.6 ? [I didn't look for mistakes on this one]
15 points $=$ did you try the last three problems in Ch 3.2 ?
20 points $=$ Ch. 2.2.15 graded carefully
20 points $=$ Ch. 3.1.7 graded carefully
30 points $=$ completeness, staple, etc
Comments, Answers:
2.2.15; Assume $A B=I$, with both $n \times n$. This does not imply $B=A^{-1}$ yet, because we don't know that $B A=I$. We need to prove that, and may need to prove A^{-1} exists first. Since we are in ch2, we may need some dets.

Proof: $\operatorname{det}(A) \cdot \operatorname{det}(B)=\operatorname{det}(A B)=\operatorname{det}(I)=1$. This shows $\operatorname{det}(A) \neq 0$, which implies A^{-1} exists. So, we can use it on both sides; $A^{-1} A B=A^{-1} I$. This simplifies to $B=A^{-1}$. Done.
3.1.7; We need to show V can't contain two different vectors $\mathbf{v}_{\mathbf{1}} \neq \mathbf{v}_{\mathbf{2}}$, that both satisfy the definition of the zero vector; $\mathbf{x}+\mathbf{v}_{\mathbf{1}}=\mathbf{x}$ and $\mathbf{x}+\mathbf{v}_{\mathbf{2}}=\mathbf{x}$. But these equations imply $\mathbf{x}+\mathbf{v}_{\mathbf{1}}=\mathbf{x}+\mathbf{v}_{\mathbf{2}}$, and (using $-\mathbf{x}$) that $\mathbf{v}_{\mathbf{1}}=\mathbf{v}_{\mathbf{2}}$. So these two 'zero vectors' are actually the same.

More remarks on this: it is OK to use the notation $\mathbf{0}$ instead of $\mathbf{v}_{\mathbf{1}}$ and maybe $\mathbf{0}_{\mathbf{2}}$ instead of $\mathbf{v}_{\mathbf{2}}$. Also, I was vague about what \mathbf{x} stands for $-I$ imagine it to be some other vector in V, but it isn't quite clear V has one! So, a slightly better proof would be; $\mathbf{v}_{\mathbf{1}}=\mathbf{v}_{\mathbf{1}}+\mathbf{v}_{\mathbf{2}}=\mathbf{v}_{\mathbf{2}}$ (explain these eqns!).

