1) Use Gaussian elimination to put the following system into reduced row echelon form. Use matrix notation. You don't have to find the solution set.

$$
\begin{array}{r}
x_{2}+x_{3}=0 \\
3 x_{1}+2 x_{2}+x_{3}=4
\end{array}
$$

2) Label each system as underdetermined, overdetermined or square. Then describe how many solutions there are (maybe infinity!), and explain that briefly.

$$
A=\left(\begin{array}{ll|l}
1 & 2 & 3 \\
0 & 1 & 2 \\
0 & 1 & 1
\end{array}\right), \quad B=\left(\begin{array}{llll|l}
1 & 2 & 0 & 1 & 5 \\
0 & 0 & 1 & 3 & 4
\end{array}\right), \quad C=\left(\begin{array}{cc|c}
1 & 0 & 5 \\
0 & 1 & 4
\end{array}\right)
$$

3) Answer each part with "True" or "False". You don't have to explain (but it doesn't hurt, and might help if we decide later that a question was not totally clear).
a) A square matrix in REF must have a lead one somewhere in the top row.
b) A 3 by 4 matrix in RREF must have at least 9 zeroes.
c) A 4 by 3 matrix in RREF must have at least 9 zeroes.
d) Gaussian elimination can change an inconsistent system into a consistent one.
e) An undetermined homogeneous system must have at least two solutions.

Remarks and Answers: This was not supposed to be very hard, and the average [based on the top 14 out of 18 grades] was high; $51 / 60$, or 85%. The unofficial scale is

$$
\begin{aligned}
& \text { A's }=55-60 \\
& \text { B's }=49-54 \\
& \text { C's }=43-48 \\
& \text { D's }=37-42 \\
& \text { F's }=0-36
\end{aligned}
$$

1) Start by swapping the rows (a Type I op):

$$
A=\left(\begin{array}{ccc|c}
1 & 0 & -1 / 3 & 4 / 3 \\
0 & 1 & 1 & 0
\end{array}\right)
$$

2) A) Over; inconsistent ($x_{2}=1=2$ is not possible);
B) Under; infinitely-many solns (consistent with free variables);
C) Square, a unique solution, $(5,4)$.
3) FFFFT. I usually go over the TF in class after each quiz. You are welcome to ask more about these though.
