1) Use Gaussian elimination to put the following system into reduced row echelon form. Use matrix notation. Find the solution set, using α notation (if necessary) in your answer.

$$
\begin{array}{r}
x_{2}+x_{3}=1 \\
x_{1}+2 x_{2}+x_{3}=4
\end{array}
$$

2) Write down the information in the traffic flow diagram [on the board] as a system of linear equations. Then solve it. Any valid method is OK, but remember to show your work.
3) Give an example of each [they are not related]. If you think that no example exists, explain clearly why not. Answer on the back.
a) An overdetermined system with infinitely many solutions.
b) A system with a free variable and a unique solution.

Remarks and Answers: The average grade was approx 79 / 100, based on the top 18 grades. The grades tended to be higher on Problems 1-2. The scale for the Quiz is

A's 87-100
B's 77-86
C's 67-76
D's 57-66
This is an unofficial scale, intended to give you a fairly accurate idea of how well you did. The average and the scale usually drop after the first or second quiz.
1)

$$
\left(\begin{array}{cccc}
1 & 0 & -1 & 2 \\
0 & 1 & 1 & 1
\end{array}\right)
$$

[Please imagine the vertical line after column 3]. $S=\{(2+\alpha, 1-\alpha, \alpha)\}$ For full credit, write the solution set this way, following all the conventions.
2) $x_{1}-x_{2}=-1, x_{2}-x_{3}=-1, x_{3}+x_{4}=5, x_{4}=1, S=\{(2,3,4,1)\}$ This was similar to exercises in the HW.

3a) There are many possible answers, for example;

$$
\begin{aligned}
& x_{1}+x_{2}=0 \\
& x_{1}+x_{2}=0 \\
& x_{1}+x_{2}=0
\end{aligned}
$$

$3 \mathrm{~b})$ None exist. If there were such a system, it would have to be consistent, to have a solution. But then, with a free variable, there would be infinitely many solutions.

Almost nobody discussed whether the system was consistent. A minor issue maybe, but worth a couple of points. Always try to consider all the possibilities, and include them in your reasoning.

