Quiz I and Key

1) Find the solution set, using α notation, if necessary.

$$
\begin{array}{r}
x_{1}+3 x_{2}+x_{3}=2 \\
x_{2}-x_{3}=4
\end{array}
$$

2a) Given the info below, is the system $A \mathbf{x}=\mathbf{c}_{\boldsymbol{1}}$ (where $\left.\mathbf{c}_{\boldsymbol{1}}=[11,3]^{T}\right)$ consistent? Explain.

$$
A=\left(\begin{array}{ccc}
-1 & 0 & 4 \\
1 & 1 & 0
\end{array}\right), \quad B=\left(\begin{array}{cc}
1 & 4 \\
2 & 0 \\
3 & 7
\end{array}\right), \quad C=A B=\left(\begin{array}{cc}
11 & 24 \\
3 & 4
\end{array}\right)
$$

2b) Is $\mathbf{c}_{\mathbf{2}}$ a linear combination of $\mathbf{a}_{\mathbf{1}}$ and $\mathbf{a}_{\mathbf{3}}$? Prove your answer.
3) Give an example of a 3×3 matrix U that is in RREF but is not the identity matrix, nor the zero matrix.
4) Answer each part with "True" or "False".
a) In problem 1 above, there are 2 free variables.
b) None of the matrices A, B or C in problem 2 are symmetric.
c) A consistent underdetermined system has infinitely many solutions.
d) Gaussian elimination can convert any system to REF.
e) A system in RREF must be consistent.

Remarks and Answers: The best scores were 100, 98 and 97. The average score among the top 15 was 80 . This may be the highest average among the quizzes this semester, but it is not too unusual for a Quiz 1. The other quizzes will probably focus more on HW-type problems and proofs, and the material gets a little harder for most people. The unofficial scale for Quiz 1 is

A's 87-100
B's 77-86
C's 67-76
D's 57-66

1) $S=\{(-10-4 \alpha, 4+\alpha, \alpha)\}$, from back substitution.

2a) Yes, $A \mathbf{b}_{\mathbf{1}}=\mathbf{c}_{\mathbf{1}}$ so $\mathbf{x}=\mathbf{b}_{\mathbf{1}}$ is a solution. I gave approx half credit for 'Yes' (do not forget to answer Yes or No !) and another half for a good explanation. That could take various forms, but it should include sound reasoning and enough words.
2b) Yes. $4 \mathbf{a}_{\mathbf{1}}+7 \mathbf{a}_{\mathbf{3}}=\mathbf{c}_{\boldsymbol{2}}$.
3) Replace the 3 rd ' 1 ' in the identity matrix by ' 0 ', for example. There are many answers, but each should have either 1 or 2 ' 1 's and the rest ' 0 's.
4) FTTTF

