1) [15 pt$]$ Use an inverse matrix to find the 2×2 matrix X such that $B X=C$, given that

$$
B=\left(\begin{array}{ll}
0 & 1 \\
1 & 3
\end{array}\right) \quad C=\left(\begin{array}{ll}
0 & 2 \\
0 & 1
\end{array}\right)
$$

2) [10pt] What is the MATLAB notation for A^{T} ? [if you are using other software, explain, and answer for your software (at your own risk)].
3) [20pt] True-False. You can assume all the matrices are square here, and in problem 4 below.

There is an elementary matrix E such that $\operatorname{det} E=0$.
If $\mathbf{x}=(1,2,3)^{T}$ is a solution of the square system $A \mathbf{x}=\mathbf{0}$, then $\operatorname{det} A=0$.
For every square matrix, $\operatorname{det}\left(A^{k}\right)=(\operatorname{det} A)^{k}$
If A and B are row equivalent, then they have the same determinant.
If A is singular, then $A \operatorname{adj}(A)=O$ (the zero matrix).
4) [15pt] Prove ONE: You can answer on the back.
a) If A is a symmetric nonsingular matrix, then A^{-1} is also symmetric [if you know a formula for the transpose of A^{-1}, you can use it without proving it].
b) Prove this part of the TFAE theorem: If A is row equivalent to I, then A is nonsingular.
c) If A is nonsingular, prove that $\operatorname{det}(A) \neq 0$ [part of a Ch 2.2 theorem].

Remarks and Answers: I gave people a small break on the MATLAB problem, since the lab access has been difficult; if you missed that one, I reduced the problem to 5 points and raised the TF problem to 25 . The overall average was $45 / 60$. The unofficial scale is:

```
A's: 51 to 60
B's: 45 to 50
C's: 39 to 44
D's: 33 to 38
F's: 0 to 32
```

1) $X=B^{-1} C=$

$$
\left(\begin{array}{cc}
0 & -5 \\
0 & 2
\end{array}\right)
$$

2) A^{\prime}
3) FTTFT
4) See text, or me.
