Let

$$
M=\left(\begin{array}{lll}
1 & 0 & 3 \\
1 & 1 & 3 \\
0 & 0 & 1
\end{array}\right)
$$

1) For the matrix above, compute M^{-1}.
2) Compute $\operatorname{det} M$. Remember to show work.
3) Answer True or False. You do not have to justify your answers. Assume all the matrices below are 3×3.

If A^{2} is row equivalent to I then A is row equivalent to I.
If every $a_{i j}$ is either 1 or 2 , then A is singular.
If A and B are symmetric and $A B=B A$, then $A B$ is symmetric.
If A is singular then A^{T} is also singular.
If $A B A=B A B$ then $B=A$.
4) Choose ONE of these to prove. Explain thoroughly. You can answer on the back.
a) If A is square and nonsingular, then $\left(A^{T}\right)^{-1}=\left(A^{-1}\right)^{T}$. Use both parts of the definition of inverse.
b) Prove this part of the TFAE theorem: If A is row equivalent to I, then A is nonsingular.
c) [Main Theorem] If A, B are square and A is nonsingular, then $\operatorname{det} A B=\operatorname{det} A \operatorname{det} B$.

Remarks, Scale and Answers: The average was 50 out of 60 , which is very good. The two highest scores were 59 and 58. The advisory scale is a little higher than the one on the syllabus, but that will change for the next quizzes.

```
A's 53 to 60
B's }47\mathrm{ to }5
C's 41 to 46
D's 35 to 40
```

1) The standard method is to apply GE to $(M \mid I)$, but you could use adj M, or maybe E_{k} 's.

$$
M^{-1}=\left(\begin{array}{ccc}
1 & 0 & -3 \\
-1 & 1 & 0 \\
0 & 0 & 1
\end{array}\right)
$$

2) $\operatorname{det} M=1$.
3) TFTTF
4) See the text or lectures for b, c. Here is a proof of 4 a , which was HW.

Proof: Since A is nonsingular, A^{-1} exists. So, $A^{-1} A=I$ and $A A^{-1}=I$ (by the definition of inverse). Taking transposes of both equations, and using the $(A B)^{T}$ formula, we get $A^{T}\left(A^{-1}\right)^{T}=\left(A^{-1}\right)^{T} A^{T}=I^{T}=I$. By the definition of inverse, this means $\left(A^{-1}\right)^{T}$ and A^{T} are inverses of each other, so $\left(A^{T}\right)^{-1}=\left(A^{-1}\right)^{T}$. Done.

Remarks: A common mistake was to use $\left(A^{T}\right)^{-1}$ in the calculations before you know it even exists (in my proof, this is not known until the very end). Another was to use determinants, but that is a Chapter 2 topic and this is a Chapter 1 problem. You might try to prove this in the style of trig identities, $\left(A^{-1}\right)^{T}=\cdots=\left(A^{T}\right)^{-1}$ (where the dots represent a sequence of simplifications) but I don't see a way to do that for this example.

