1) [40pt] Find a spanning set for $N(A)$. Write your answer in set notation (as usual).

$$
A=\left(\begin{array}{llll}
0 & 3 & 1 & 1 \\
1 & 1 & 1 & 3
\end{array}\right)
$$

2) [30 pt] Find the $(2,3)$ entry of B^{-1} from the ratio of 2 determinants (hint: this was HW from the section on Cramer's Rule).

$$
B=\left(\begin{array}{lll}
1 & 2 & 1 \\
0 & 4 & 3 \\
1 & 2 & 2
\end{array}\right)
$$

3) [30pt] Prove ONE: You can answer on the back. Small extra credit for (c), if done well.
a) Prove that the element $\mathbf{0}$ in a vector space is unique.
b) If $L=\left\{\mathbf{v}_{\mathbf{1}}, \mathbf{v}_{\mathbf{2}}, \ldots \mathbf{v}_{\mathbf{k}}\right\} \subset V$, a vector space, then span (L) is a subspace of V.
c) Use induction to prove that if A is upper triangular, then $\operatorname{det} A=a_{11} a_{22} \ldots a_{n n}$.

Remarks and Answers: The average grade among the top 18 was 74 / 100, which is quite good for a Quiz 3. The scores were very diverse, with 6 grades over 90, and 6 grades under 40. The approx scale for Q3 is

A's 83-100
B's 73-82
C's 63-72
D's 53-62
Several people have asked me recently about their chances to pass the course. Here's a rough guide. Add your 3 quiz scores. If you did not hand in MHW1, deduct 30 points from that. If the result is at least 160 out of 300 , you have a pretty good chance for a C (though you may need to work harder). If you have two good scores and one very bad score (which will surely be dropped) your odds are probably a little better than this guide suggests. I will give you another guide (probably more accurate) after Q4. Feel free to see me at any time about your grades.

1) $L=\left\{[-2 / 3,-1 / 3,1,0]^{T},[-8 / 3,-1 / 3,0,1]^{T}\right\}$. There are many other acceptable answers, but this is the one you get from following conventions.

Notice that this final formula does not contain α or + or $N(A)$.
2) $-3 / 4$. This is from the HW. In my opinion, the author intended for you to use Cramer's rule: You can start with $B B^{-1}=I$ and by focusing only on the third column of both
sides, you get a linear system. The unknowns are the 3 rd column entries of B^{-1} :

$$
\left(\begin{array}{lll}
1 & 2 & 1 \\
0 & 4 & 3 \\
1 & 2 & 2
\end{array}\right)\left(\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right)=\left(\begin{array}{l}
0 \\
0 \\
1
\end{array}\right)
$$

Then, the answer comes from $x_{2}=\operatorname{det}\left(B_{2}\right) / \operatorname{det} B=-3 / 4$. On the Quiz, most people used $B^{-1}=\frac{1}{4}$ adj B instead. I gave full credit, because the entries of adj B are technically determinants (except for the \pm), but I doubt this was the intention.
3) See the text, or me.

