1) $[20 \mathrm{pt}]$ This is a slight rephrasing of HW 3.1.11. Define + on the set of column vectors in R^{2} as usual, but define scalar multiplication by $\alpha \circ\binom{x_{1}}{x_{2}}=\binom{\alpha x_{1}}{x_{2}}$. Is R^{2} a vector space with these operations? Briefly justify your answer.
2) [10pt] What do you type onto the command line in MATLAB, to generate a random 5 x 5 matrix ?
3) [10pt] Describe how to create a coding matrix A so that A^{-1} has no fractions.
4) [30pt] True-False. You can assume all the matrices are square in problems 4 and 5.

The set $S=\left\{\left[x_{1}, x_{2}\right]^{T}: 3 x_{1}+5 x_{2}=0\right\}$ is a subspace of R^{2}.
The set $L=\left\{[1,2]^{T},[3,4]^{T}\right\}$ spans R^{2} and is linearly independent.
For all scalars $\alpha>0, \operatorname{det}(\alpha A)=\alpha(\operatorname{det} A)$.
If $A \mathbf{x}=\mathbf{b}$ is consistent, then $\mathbf{b} \in \operatorname{span}\left\{\mathbf{a}_{\mathbf{j}}\right\}$ (the columns of A).
If A is nonsingular, then A adj $(A)=I$.
5) [30pt] Prove ONE: You can answer on the back.
a) State and prove Cramer's Rule.
b) Use induction to prove that if A is upper triangular, then $\operatorname{det} A=a_{11} a_{22} \ldots a_{n n}$.
c) If $L \subset V$ then span L is a subspace of V.

Remarks and Answers: The average among the top 15 was about 70, with a high score of $94 / 100$. The unofficial scale is:

$$
\text { A's } 80-100 \quad \text { B's } 70-79 \quad \text { C's } 60-69 \quad \text { D's } 50-59
$$

1) No. It fails Axiom 6 (you can give the formula or idea instead, of course).
2) $\operatorname{rand}(5)$
3) Multiply a few type III matrices together, so that $\operatorname{det} A=1$.
4) TTFTF
5) See the textbook.
