1) Let $\mathbf{u}_{\mathbf{1}}=(1,1,1)^{T}$ and $\mathbf{u}_{\mathbf{2}}=(1,2,2)^{T}$ and $\mathbf{u}_{\mathbf{3}}=(2,3,4)^{T}$.
a) Write $\mathbf{x}=(3,2,5)^{T}$ as a linear combination of the $\mathbf{u}_{\mathbf{j}}$. For maximal credit use a transition matrix.
b) Write $\mathbf{y}=(1,1,2)^{T}$ as a linear combination of the $\mathbf{u}_{\mathbf{j}}$. Label your 2 answers clearly.
2) Let $S=\operatorname{span}\left\{x^{3}+x+1,2 x^{3}+x+1,3 x^{3}+x+1, x+1\right\} \subset P_{4}$.
a) Find a basis for S and briefly justify your answer.
b) What is the dimension of S ?
3) Choose ONE. You can answer on the back.
a) Prove this part of the $2 / 3$ thm: If L is a L.I. set of n vectors in V, and $\operatorname{dim} V=n$, then L spans V.
b) Prove that any nonempty subset of a linearly independent set of vectors $\left\{\mathbf{v}_{\mathbf{1}}, \mathbf{v}_{\mathbf{2}}, \ldots \mathbf{v}_{\mathbf{n}}\right\}$ is also linearly independent.

Remarks and Answers: The average of the top 15 scores was about 60 out of 100, which is a bit low, but not too unusual for Chapter 3. The high scores were 97 and 90 . The unofficial scale for the quiz is

$$
\begin{aligned}
& \text { A's } 73-100 \\
& \text { B's } 63-72 \\
& \text { C's } 53-62 \\
& \text { D's } 43-52
\end{aligned}
$$

I have also estimated your semester grade in the upper right corner of your Quiz 4. This does not include your HW, MHW, your lowest quiz grade or any extra credit; just your best 3 out 4 quiz grades. To avoid mistakes - check this number ! The average of these scores is about 71 , with highs of 94 and 88 . I placed yours on a scale similar to the one above, but with A's from $80-100$, etc, to estimate your letter grade.

1) [40 points] The t.m. is U^{-1} and the answers are a) $U^{-1} \mathbf{x}$ and b) $U^{-1} \mathbf{y}$, as given below:

$$
U^{-1}=\left(\begin{array}{ccc}
2 & 0 & -1 \\
-1 & 2 & -1 \\
0 & -1 & 1
\end{array}\right), \quad U^{-1} \mathbf{x}=\left(\begin{array}{c}
1 \\
-4 \\
3
\end{array}\right)_{U}, \quad U^{-1} \mathbf{y}=\left(\begin{array}{c}
0 \\
-1 \\
1
\end{array}\right)_{U}
$$

Ideally, you should take these a step further. For a), for example, you should write $\mathbf{x}=$ $1 \mathbf{u}_{1}-4 \mathbf{u}_{\mathbf{2}}+3 \mathbf{u}_{\mathbf{3}}$ (and then you should check this is correct, because it so quick and easy to do so). But I gave full credit for the coordinate vector answer above.

I gave up to 35 points for solving the systems $U \mathbf{c}=\mathbf{x}$ and $U \mathbf{c}=\mathbf{y}$. But that method doesn't follow the instructions, and it takes longer (with more chances for mistakes).
2) [30 points] a) One basis is $L=\left\{x^{3}, x+1\right\}$. It is clear that each element of the given spanning set is a LC of these two, so these also span S. Since they are not scalar multiples of each other, they are LI. b) $\operatorname{dim} S=2$, since we found a basis with exactly two vectors in it.

Many people wrote mysterious calculations with column vectors, which I just didn't understand, and I couldn't give credit for that. Column vectors make sense when you already have a basis to work with. It might be possible to use a basis for P_{4}, such as $B=\left\{x^{3}, x^{2}, x, 1\right\}$, to create a coordinate system and then use column vectors. But the stuff I saw was not like that.
3) See the text for 3a and the HW for 3b (which I will probably also go over in class asap).

If you are having trouble writing proofs, then talk to someone about it, for example, me or Camilo! It is very helpful to learn what you are doing right and wrong this way Reviewing graded work may not be enough.

