1) Let $S$ be the subspace of $P_{4}$ consisting of all polynomials of the form $a x^{2}+b x+4 b$. Find a basis for $S$.
2) Find all values of $k$ such that $[k+1, k+2, k+3]^{T}$ is in the column space of $A$ :

$$
A=\left(\begin{array}{ll}
1 & 1 \\
1 & 0 \\
0 & 1
\end{array}\right)
$$

3A) Answer True of False. If you would prefer to write a proof, you can cross out this problem and answer 3B instead. You can assume all matrices below are 3 by 3, and can ask about abbreviations.

If some set of 100 vectors spans $V$, then $V$ is finite dimensional.
If the rows of $A$ are LD then the rows of $A B$ are also LD.
If $A$ is nonsingular then rank $A=\operatorname{rank} A B$.
If $B$ is row equivalent to $I$ then the column space of $B$ is $R^{3}$.
If $B$ is row equivalent to $A$ then the column spaces of $A$ and $B$ are equal.
3B) This is an optional substitute for 3A). Don't do both 3A and 3B.
Show that if $n$ vectors span $V$ and $\operatorname{dim} V=n$, then the vectors are LI. (Prove part of the " $2 / 3$ " theorem. Don't quote it.)

Remarks: Very strange results. The top 6 students did better on this quiz than their semester average so far. All others did worse. The average among the top 15 students was approx 56 . The highs were 100 and 100, but there were NO scores between 55 and 80 . The not-very-meaningful scale is

A's 68-100
B's 58-67
C's 48-57
D's 38-47

The drop date (I think) is March 17, and I leave this to you. I have written your semester average in the upper right, as usual. It is based on your 4 quiz scores so far. But your worst was weighted only half as much, since there is a good chance it won't count later. The average for this stat is 69 , with highs of 100 and 95 - both impressive! The rough scale is

$$
\begin{aligned}
& \text { A's } 78-100 \\
& \text { B's } 68-77 \\
& \text { C's } 58-67 \\
& \text { D's } 48-57
\end{aligned}
$$

If your current semester score is below 58, you have rather poor chances to pass with a C, unless you improve some work habits. If below 50 , you are very unlikely to pass, even with increased effort. Of course, I will factor in the HW and MHW scores later. For now, that is a bit hard to do in any precise way, and I have no scale yet for those grades. See me if you need help with any of this.

## Answers:

1) Basis $=\left\{x^{2}, x+4\right\}$. There is no need for column vectors here - just factor out the a, b. A very common problem was to give an answer in strange notation (column vectors, matrices, etc). I gave partial credit for that when possible.
2) $k=-4$. My intended method was to solve the system $A \mathrm{x}=$ the given vector. It is inconsistent (the usual $0=$ nonzero equation) unless you set $k=-4$. Instead, some people set $c_{1} \mathbf{x}_{1}+c_{2} \mathbf{x}_{2}=$ the given vector, and did some simple algebra to get the same result.

3A) TTFTF
3B) See the text. Only 2 people chose 3B.

