1) Short Answers: a) [10pts; This is based on MHW 4.1]: Suppose $W=\operatorname{triu}(\operatorname{ones}(2))$, and we combine it's columns into a basis $F=\left\{\mathbf{w}_{\mathbf{1}}, \mathbf{w}_{\mathbf{2}}\right\}$. Suppose $L: R^{2} \rightarrow R^{2}$ and $L\left(\mathbf{w}_{\mathbf{2}}\right)=\mathbf{w}_{\mathbf{1}}$ and $L\left(\mathbf{w}_{\mathbf{1}}\right)=2 \mathbf{w}_{\mathbf{1}}-\mathbf{w}_{\mathbf{2}}$. Find the matrix representation of L with respect to F.
b) [5pts] What was the 2×2 matrix representation A in the rabbit story? (recall each adult had two babies per year, which became adults in one year).
c) [5pts] A transition matrix can be thought of as a matrix representation of which simple linear transformation?
2) Let $L: R^{3} \rightarrow R^{3}$ be $L(\mathbf{x})=\left[x_{1}, x_{1}, x_{1}\right]^{T}$. 2a) Find $\operatorname{Ker}(\mathrm{L})$.

2b) Find the range of L.
2c) Is L one-to-one? (explain briefly)
2d) Is L onto R^{3} ? (explain briefly)
3) Choose ONE of these.
a) Suppose $L: V \rightarrow W$ is linear. Show that $\operatorname{ker}(L)$ is a subspace of V.
b) Suppose that $A=S T$ and $B=T S$ where S is nonsingular. Prove that A is similar to B. [This should be pretty short, mainly a calculation, but include some words, such as the definition of similar].
c) Thm 3.6.6: $\operatorname{Dim}(\operatorname{Row}(A))=\operatorname{Dim}(\operatorname{Col}(A))$.

Remarks and Answers: The Q5 average was about 37 / 60, rather low, but two students scored over $55 / 60$. The scale for Q5 is:
A's 46 to 60
B's 40 to 45
C's 34 to 39
D's 28 to 33
F's 0 to 27

I've updated your estimated semester grade, based on this quiz and on dropping your lowest quiz grade so far. See the upper right corner, in blue ink. I have still not included HW or MHW into the estimate. Since this is a new method compared to the Quiz 4 estimate, there might be a few surprises, but most of the grades stayed about the same.

1a) and 1b)

$$
M=\left(\begin{array}{cc}
2 & 1 \\
-1 & 0
\end{array}\right) \quad \text { and } \quad A=\left(\begin{array}{ll}
1 & 1 \\
2 & 0
\end{array}\right)
$$

1c) the identity transformation
2a) $\left\{\mathbf{e}_{\mathbf{2}}, \mathbf{e}_{\mathbf{3}}\right\}$
2b) $\left\{\mathbf{e}_{\mathbf{1}}+\mathbf{e}_{\mathbf{2}}+\mathbf{e}_{3}\right\}$
2c) No; the Ker contains non-zero vectors.
2d) No; the range (see 2 b) is not R^{3}.
3) See the text. I gave at least 15 points (usually much more) if the proof was logically correct (eg the steps could be justified), but only gave a perfect 20 if it included full explanations.

