1) These two matrices are row equivalent. U is in REF but not RREF.

$$
A=\left(\begin{array}{llll}
5 & 0 & 5 & 0 \\
3 & 2 & 5 & 6 \\
2 & 0 & 2 & 3
\end{array}\right) \quad U=\left(\begin{array}{llll}
1 & 0 & 1 & 7 \\
0 & 1 & 1 & 3 \\
0 & 0 & 0 & 1
\end{array}\right)
$$

a) Find a dependency relation for the columns of A; give a nontrivial LC equal to the 0 vector.
b) Find a basis of $R(A)$.
c) Find a basis of $N(A)$ and find the nullity of A.
2) Find the vector projection of $[25,0]^{T}$ onto $[3,4]^{T}$.
3) Circle ONE of these proofs, and answer on the back.
a) Let $L: V \rightarrow W$ be linear, and let S be a subspace of V. Prove that $L(S)$ is a subspace of W.
b) If $\operatorname{Ker}(L)=\{\mathbf{0}\}$ then L is 1-1.
c) State and prove Thm 5.1.1, the one with $\cos \theta$ in it.

Remarks: The average among the top 15 students was approx 58. The highs were 100 and 100 (again!). The scale is

A's 68-100
B's 58-67
C's 48-57
D's 38-47
I have written your semester average in the upper right, as usual. It is based on your best 4 out of 5 quiz scores so far. The average for this stat is 70 , with highs of 100 and 98 . The rough semester scale is

A's 79-100
B's 69-78
C's 59-68
D's 49-58

Answers:

1a) $\mathbf{a}_{\mathbf{1}}+\mathbf{a}_{\mathbf{2}}-\mathbf{a}_{\mathbf{3}}+0 \mathbf{a}_{\mathbf{4}}=\mathbf{0}$. I gave partial credit for other forms, such as a column vector. You can get to this from U, or from part c below.

1b) $\left\{\mathbf{a}_{1}, \mathbf{a}_{\mathbf{2}}, \mathbf{a}_{\mathbf{4}}\right\}$ from looking at U. It is OK to write out the column vectors, of course. There are actually zillions of possible answers to this, such as $\left\{\mathbf{e}_{\mathbf{1}}, \mathbf{e}_{\mathbf{2}}, \mathbf{e}_{\mathbf{3}}\right\}$, since $R(A)=R^{3}$, but for maximum credit you needed to show your reasoning.

A fairly common notational mistake was to write something like $R(A)=\left\{\mathbf{a}_{\mathbf{1}}, \mathbf{a}_{\mathbf{2}}, \mathbf{a}_{\mathbf{4}}\right\}$ (this needs the words a basis of or span).

1c) A basis is $\left\{[1,1,-1,0]^{T}\right\}$. The nullity is 1 . This entire problem was also on Quiz 5 in 2009.
2) The standard formula gives $[9,12]^{T}$.
3) See the text.

