1) Answer TRUE or FALSE. Assume the standard basis of R^{2} is used.
a) For every matrix, $R(A)^{\perp}=N(A)$.
b) The matrix representation A of any rotation L in R^{2} will have $\operatorname{det}(A)=1$.
c) If A is similar to I, then $A=I$.
d) The norm of the vector projection $\mathbf{p}=\operatorname{proj}_{\mathbf{y}}(\mathbf{x})$ is the scalar projection α.
e) If A is similar to B and $A^{2}=4 I$, then $B^{2}=4 I$.
2) Define $L: P_{3} \rightarrow P_{2}$ by $L(p)=p^{\prime}(x)+p(1)$. Let $B=\left\{x^{2}, x, 1\right\}$ be a basis of P_{3} and let $C=\{2, x+1\}$ be a basis of P_{2}. Find the matrix representation of L with respect to these bases.
3) Let $\mathbf{x}=(2,4,3)^{T}$ and $\mathbf{y}=(1,1,1)^{T}$. a) Compute the projection \mathbf{p} of \mathbf{x} onto \mathbf{y}.
b) Compute $\mathbf{x}-\mathbf{p}$ and check directly whether or not $\mathbf{x}-\mathbf{p} \perp \mathbf{p}$.

Bonus (about 5pts): State and prove one of the four theorems listed for this quiz.

Remarks and Answers: Unexplicably, the grading began based on 30 points per problem, so at the end I converted from a 90 point max to 60 , to match the other quizzes, then added any bonus points. For example, $63 / 90$ plus 5 bonus points became $42 / 60+5=$ 47/60.

The average was $39 / 60$ based on almost all the grades, which is fairly normal. The highest grades were 57 and 53 . An advisory scale is

A's 44 to 60
B's 38 to 43
C's 32 to 37
D's 26 to 31
For a semester grade estimate, average out your best 4 out of 5 quiz scores and use the second Quiz 4 scale with B's starting at $41 / 60$, etc. If your HW and MHW averages are abnormal, make some common sense adjustments. Each is worth approx the same as one quiz, but one with a relatively high class average. Or see me.

1) FTTFT. The fourth is a little tricky, $\|\mathbf{p}\|=|\alpha|$, which is not always the same as α.
2) Start with $L\left(x^{2}\right)=2 x+1=-1 / 2(2)+2(x+1)=(-1 / 2,2)^{T}$ in C coordinates, which gives the first column of A.

$$
A=\left(\begin{array}{ccc}
-1 / 2 & 1 & 1 / 2 \\
2 & 0 & 0
\end{array}\right)
$$

3a) $\mathbf{p}=(3,3,3)^{T}$. It is OK to use α to get this, but people tended to make more mistakes that way.
$3 \mathrm{~b}) \mathbf{x}-\mathbf{p}=(-1,1,0)^{T}$. Since $(\mathbf{x}-\mathbf{p})^{T} \mathbf{p}=(-1,1,0)(3,3,3)^{T}=0$, they are orthogonal (and it is a theorem that they must be). The results were fairly low on this part, especially in the last step, due to various confusions and mistakes there - or earlier.
4) See the HW page for the list of 4 proofs. See the text or lectures for the proofs.

