1) Let S be the subspace of R^{3} spanned by $\mathbf{x}=(2,1,1)^{T}$. Find a basis of S^{\perp}.
2) In $C[0, \pi]$ with inner product $\int_{0}^{\pi} f g d x$, compute $\left\langle e^{2 x}, e^{-2 x}\right\rangle$.
3) Choose ONE of these.
a) Prove thm 5.1.1; that for nonzero vectors $\mathbf{x}, \mathbf{y} \in R^{2}, \mathbf{x}^{\mathbf{T}} \mathbf{y}=\|x\|\|y\| \cos (\theta)$.
b) Thm 5.3.2: If A has rank n, then the normal equations have a unique solution.
c) Derive the normal equations, used to solve least squares problems.

Remarks and Answers: The Q6 average was about 42 / 60, with mostly good scores on problems 1 and 2, but very mixed results on the proof. The scale for Q6 is:
A's 46 to 60
B's 40 to 45
C's 34 to 39
D's 28 to 33
F's 0 to 27

I've updated your estimated semester grade, including this quiz and HW1-6, but not your lowest quiz grade, nor the MHW. See the upper right corner. If you opted out of the HW, your average may be inaccurate [I subbed HW=80, for now]. Answers:

1) You were supposed to use the F.S.Thm from Ch.5.2. But most people used ad hoc methods and did OK. One answer is $\left\{[-1,1,1]^{T},[0,1,-1]^{T}\right\}$. Every good answer should include two vectors, by the theorem, $\operatorname{dim} S+\operatorname{dim} S^{\perp}=n=3$.
2) π
3) See the text. Both b and c were announced. The proof of b could use the textbook proof, but was also one of your previous hw's.
