1) Find the best Least Squares fit by a linear function for this data. One of the incomplete GE calculations below might help a little.

x	y
-1	0
0	1
1	3
2	9

$$
\left(\begin{array}{lll}
4 & 2 & 13 \\
2 & & 21
\end{array}\right) \rightarrow\left(\begin{array}{lll}
1 & 1 / 2 & 13 / 4 \\
0 & & 29 / 2
\end{array}\right) \quad \text { and } \quad\left(\begin{array}{lll}
3 & 4 & 1 \\
3 & & 8
\end{array}\right) \rightarrow\left(\begin{array}{ccc}
1 & 4 / 3 & 1 / 3 \\
0 & & 7
\end{array}\right)
$$

2) In P_{3} with inner product $\int_{0}^{1} f g d x$, compute proj $x_{x} x^{3}$.
3) Choose ONE of these to prove (on the back).
a) Thm 5.2.1: The Fundamental Subspace Theorem (include both directions).
b) Thm 5.3.2: If A has rank n, then the normal equations have a unique solution.
c) The product of two orthogonal matrices is also orthogonal. Include the definition of orthogonal and at least a few words about your reasoning.

Remarks and Answers: The average was about 55, with highs of 100 and 78, but with several very low scores or non-attendance. The scale is

$$
\begin{aligned}
& \text { A's } 66-100 \\
& \text { B's } 56-65 \\
& \text { C's } 46-55 \\
& \text { D's } 36-45
\end{aligned}
$$

The semester average is about 75 , for the best 5 of 6 quizzes, among the best 11 students (including two who did not take Quiz 6). The rough scale is

$$
\begin{aligned}
& \text { A's } 79-100 \\
& \text { B's } 69-78 \\
& \text { C's } 59-68 \\
& \text { D's } 49-58
\end{aligned}
$$

1) $f(x)=2.9 x+1.8$. This was exercise 5.3 .5 and is similar to an example in the book, also done in class. A common mistake was to put the 8 numbers directly into a matrix A.
2) $3 x / 5$, from $\left\langle x, x^{3}\right\rangle=1 / 5$, etc.
3) See the text for a. For b, you can use the text proof or can follow HW 5.2.13. Part c is easy if you use the theorem about $Q^{T} Q=I$ (and it is probably very hard without that).
