1) [40 points] Let S be the subspace of R^{3} spanned by $\mathbf{v}=[1,1,-1]^{T}$.

1a) Find a basis for S^{\perp}.
1b) Write the vector $\mathbf{w}=[2,1,0]^{T}$ as a sum of two vectors, one from S and one from S^{\perp}.
2) [30 points] Find the least squares solution to the system.

$$
\begin{aligned}
& -x_{1}+x_{2}=10 \\
& 2 x_{1}+x_{2}=5 \\
& 1 x_{1}-2 x_{2}=20
\end{aligned}
$$

3) [30 points] Choose ONE. You may continue on the back, but leave a note here.
a) State and then prove the normal equations used with Least Squares problems.
b) $N\left(A^{T} A\right)=N(A)$ (this includes parts a and b of exercise 5.2.13).
c) State the definition of a norm and show that $\|\mathbf{x}\|_{1}=\left|x_{1}\right|+\left|x_{2}\right|$ (Manhattan distance) is a norm on R^{2}.

Remarks, Scales: The quiz average was approx 57 , with top scores of 90 and 80 out of 100. The advisory scale for Quiz 6:

```
A's 66 to 100
B's 56 to 65
C's 46 to 55
D's 36 to 45
```

Your current average is written in the upper right on your quiz. This includes your best 5 out of 6 quiz grades, based on the assumption that your MHW average will replace your lowest quiz grade. The class average for that number is about 73 . As before, I have not yet used the HW or MHW in the setting this advisory semester scale:

```
A's }81\mathrm{ to }10
B's }71\mathrm{ to }8
C's }61\mathrm{ to }7
D's }51\mathrm{ to }6
```


Answers:

1a) The standard method (for harder versions of this problem) is to choose a matrix A so that $S=R(A)$ and use the theorem that $S^{\perp}=N\left(A^{T}\right)$, and then GE. But I accepted trial-and-error methods, usually leading to a basis such as $\left\{[1,-1,0]^{T},[1,0,1]^{T}\right\}$. Other answers are possible.

We have a theorem that $\operatorname{dim} S^{\perp}+\operatorname{dim} S=n$, so you should expect two vectors in the basis. I did not give much credit for finding just one.
$1 \mathrm{~b}) \mathbf{w}=\mathbf{v}+\left[\begin{array}{lll}1, & 0 & 1\end{array}\right]^{T}$. Again, I accepted trial and error methods, which were pretty easy if you found the basis given above for (1a). There is only one correct answer to (1b), based on the $S \oplus S^{\perp}$ theorem.

For harder versions (or if you found some unusual answer to (1a)), the standard method is to set $\mathbf{w}=x_{1} \mathbf{v}+x_{2} \mathbf{b}_{\mathbf{1}}+x_{3} \mathbf{b}_{\mathbf{2}}$ and solve a system to find \mathbf{x}. See the proof of thm 5.3.2, if needed.
2) The normal equations, $A^{T} A \mathbf{x}=A^{T} \mathbf{b}$ are

$$
\left(\begin{array}{cc}
6 & -1 \\
-1 & 6
\end{array}\right)\binom{x_{1}}{x_{2}}=\binom{20}{-25} \text {, so }\binom{x_{1}}{x_{2}}=\frac{1}{35}\binom{95}{130} .
$$

The last step is probably easiest using Cramer's Rule or $\left(A^{T} A\right)^{-1}$, since the system is so small, but GE is also OK.

3a) You were supposed to prove that $A^{T} A \hat{\mathbf{x}}=A^{T} \mathbf{b}$. See pages 227-228.
3b) You can prove (i) that $N(A) \subseteq N\left(A^{T} A\right)$ which is very easy, then prove (ii) that $N\left(A^{T} A\right) \subseteq N(A)$ which is slightly harder - see exercise $5.2 .13 \mathrm{a}+\mathrm{b}$, or the first 3 sentences in the proof of Thm 5.3.2.

3c) See the text for the definition of norm (the 3 rules), and recall that $\|\mathbf{x}\|_{1}=\left|x_{1}\right|+\left|x_{2}\right|$. To prove rule 2 for example, write $\|\alpha \mathbf{x}\|_{1}=\left|\alpha x_{1}\right|+\left|\alpha x_{2}\right|=|\alpha|\left|x_{1}\right|+|\alpha|\left|x_{2}\right|=|\alpha|\left(\left|x_{1}\right|+\left|x_{2}\right|\right)=$ $|\alpha|\|\mathbf{x}\|_{1}$ perhaps with some short explanations.

