1) Suppose L rotates each vector in R^{2} by 45 degrees clockwise. Find the matrix representation of L (standard basis). Hint: $\cos (45)=\sqrt{1 / 2}$.
2) [20 pts] True-False. You can assume the matrices are all square.

All the eigenvectors of a nilpotent matrix are 0 .
If eigenvectors $\mathbf{x}_{\mathbf{1}}$ and $\mathbf{x}_{\mathbf{2}}$ correspond to $\lambda_{1} \neq \lambda_{2}$ then $\mathbf{x}_{\mathbf{1}} \perp \mathbf{x}_{\mathbf{2}}$.
If A is similar to B then they have the same rank.
The Google PageRank algorithm is a Markov process.
$\exists A \in R^{3 \times 3}$ such that $(3,1,1) \in \operatorname{Row}(A)$ and $(1,1,3)^{T} \in N(A)$.
If $L: V \rightarrow W$ is linear, then $\operatorname{ker}(L) \perp L(V)$.
We used a basis of 3 eigenvectors to solve the Rabbit problem.
For all 3×3 matrices, $\operatorname{rank}(A B) \leq \operatorname{rank}(B)$.
The normal equations are $A A^{T} \mathbf{x}=A^{T} \mathbf{b}$.
Overdetermined systems are usually inconsistent.
3) Choose ONE [from Ch 6.4 HW]
a) Show that if U is unitary and $\mathbf{x} \in C^{n}$, then $\|U \mathbf{x}\|=\|\mathbf{x}\|$.
b) Show that if $\mathbf{x} \in C^{n}$ is a unit vector and $U=I-2 \mathbf{x} \mathbf{x}^{H}$, then U is unitary and Hermitian, and $U^{-1}=U$.
4) Choose ONE of these to prove.
a) If an nxn matrix A is diagonalizable, then it has n L.I. eigenvectors.
b) State and prove the Spectral Theorem.
5) [15pts] You are given this $A=Q R$ factorization to help with the questions below. Note that the $\frac{1}{2}$ scalar is part of Q.

$$
\left(\begin{array}{ccc}
1 & -1 & 4 \\
1 & 4 & -2 \\
1 & 4 & 2 \\
1 & -1 & 0
\end{array}\right)=\frac{1}{2}\left(\begin{array}{ccc}
1 & -1 & 1 \\
1 & 1 & -1 \\
1 & 1 & 1 \\
1 & -1 & -1
\end{array}\right)\left(\begin{array}{ccc}
2 & 3 & 2 \\
0 & 5 & -2 \\
0 & 0 & 4
\end{array}\right)
$$

5a) Find a Least Squares solution to the system $A \mathbf{x}=\mathbf{b}=[1,2,3,4]^{T}$
5b) Find $\mathbf{p}=\operatorname{proj}_{R(A)} \mathbf{b}$.

5c) Let $S=\operatorname{span}\left\{\mathbf{q}_{\mathbf{1}}, \mathbf{q}_{\mathbf{2}}\right\} \subset R(Q) \subset R^{4}$. Find $\operatorname{proj}_{S} \mathbf{b}$.
6) $[5 \mathrm{pts}$ each $]$
a) Define linearly independent.
b) State the parallelogram law about norms of vectors (from MHW).
7) Compute e^{A} (and simplify) given that $A=X D X^{-1}$ and

$$
X=\left(\begin{array}{cc}
1 & -1 \\
0 & 1
\end{array}\right) \quad D=\left(\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right)
$$

8) $[15 \mathrm{pts}$ total] Give an example of each:
a) A normal matrix that is not Hermitian.
b) A defective matrix.
c) A matrix A with no zero entries such that $A^{2}=I$. Hint: you might start from $A=X D X^{-1}$, choose D carefully, and guess at X.

Remarks and Answers: The average was about $55 / 100$, which is low. The problems on recent topics had low average results, but problems 1, 2 and 4 got good results. Most the problems were new, but Problem 5 has appeared on other finals.

1) Use $L\left(e_{j}\right)$, as usual;

$$
A=\frac{1}{\sqrt{2}}\left(\begin{array}{cc}
1 & 1 \\
-1 & 1
\end{array}\right)
$$

2) TFTTF FFTFT
3) Most people chose a), which is easy, but the results weren't very good. Main steps of a):

$$
\|U x\|^{2}=(U x)^{H} U x=x^{H} U^{H} U x=x^{H} x=\|x\|^{2}
$$

4) See text.

5a) $x=[2.9,-0.1,-0.25]^{T}$. Start from $R x=Q^{T} b$ which is ready for back substitution. This is one of the reasons for doing a $Q R$ factorization. Several people converted this to $x=R^{-1} Q^{T} b$, which takes much much longer.

5b) Use the answer to 5a), $p=A x=[3,2,3,2]^{T}$.
5c) $[5 / 2,5 / 2,5 / 2,5 / 2]^{T}$. This is not much related to the previous parts, but it does use the fact that the two columns of Q must be onl. Based on the theorem in Ch 5.5, add the
projections onto q_{1} and q_{2}. By coincidence, $b \perp q_{2}$, so you could just project onto q_{1} (but explain why).

Remark: It's possible to do 5 c) like 5 b), or to do 5 b) like 5 c), but I think the explanations above are the simplest. This problem (or similar) has appeared on some of my past exams.
6)a) See text. b) See MHW (nobody got this one).
7)

$$
e^{A}=X e^{D} X^{-1}=\left(\begin{array}{cc}
e & e-1 \\
0 & 1
\end{array}\right)
$$

8a) [Normal means $A^{H} A=A A^{H}$]. You can choose any unitary matrix or any skewHermitian one (etc), such as

$$
A=\left(\begin{array}{cc}
0 & 1 \\
-1 & 0
\end{array}\right)
$$

If it is not fairly obvious that your matrix is normal, you should justify that by a calculation or an explanation.

8b) Defective means not diagonalizable. From class:

$$
A=\left(\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right)
$$

8c) To my surprise, several people found a good answer without any clear strategy. One person chose A to represent a reflection of R^{2} in a line (they used $\theta=-\pi / 8$ but almost any such line is OK). Not sure they did this on purpose, though. My hint was to set $A=X D X^{-1}$, and then

$$
D=\left(\begin{array}{cc}
-1 & 0 \\
0 & 1
\end{array}\right)
$$

so that $A^{2}=D^{2}=I$ regardless of X. Then I chose X randomly, hoping that A would not contain zeroes. I used

$$
X^{-1}=\left(\begin{array}{ll}
1 & 2 \\
3 & 4
\end{array}\right) \quad \text { and got } \quad A=\left(\begin{array}{cc}
5 & 12 \\
-2 & -5
\end{array}\right)
$$

but there are many other answers.

