Just the problems. No answer key is available at this time.

1) (7pts) Solve for X, given that $A X+B=X$ and

$$
A=\left[\begin{array}{ll}
2 & 3 \\
0 & 2
\end{array}\right] \quad B=\left[\begin{array}{cc}
-1 & -2 \\
-3 & 0
\end{array}\right]
$$

2) (20 points) Answer True or False. Assume the matrices are $3 x 3$.

If A is defective and similar to B, then B is defective.
If A and B have the same eigenvalues 4,4 and 6 , then they are similar.
If \mathbf{x} is an eigenvector of A, then $2 \mathbf{x}$ is an eigenvector of A^{2}.
If \mathbf{x} is an eigenvector of A, then \mathbf{x} is an eigenvector of $3 A+I$.
If A is square and real then $A A^{T}$ is diagonalizable.
If U is unitary then $U+I$ is unitary.
If U is unitary then U^{T} is unitary.
If U is unitary then U^{H} is normal.
If T is a Hermitian upper triangular matrix, then T is a diagonal matrix.
A and A^{T} have the same eigenvalues.
3) (20pts) Note: this problem may be easier than it looks.
a) Factor $A=Q R$ (such that $Q^{T} Q=I$ and R is upper triangular), where

$$
A=\left[\begin{array}{cc}
4 / 5 & 0 \\
0 & 1 \\
-3 / 5 & 0
\end{array}\right]
$$

b) Let $S=\mathrm{R}(A)$ and $\mathbf{w}=[1,2,3]^{T}$. Find the Least Squares solution for the system $A \mathbf{x}=\mathbf{w}$ and compute $A \hat{\mathbf{x}}$.
c) Find $\mathbf{p}=\operatorname{proj}_{S}(\mathbf{w})$ using the Ch 5.5 method (the summation formula). For a little extra credit, find the matrix representation for this projection operator.
d) Show that $\mathbf{w} \in S+S^{\perp}$ by splitting $\mathbf{w}=\mathbf{w}_{1}+\mathbf{w}_{2}$, with $\mathbf{w}_{1} \in S$ and $\mathbf{w}_{2} \in S^{\perp}$.
4) (7 pts) Compute $e^{3 A}$ given that

$$
A=\left(\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right)\left(\begin{array}{ll}
1 & 0 \\
0 & 2
\end{array}\right)\left(\begin{array}{cc}
1 & -1 \\
0 & 1
\end{array}\right)
$$

5) (7 pts) Show that if A is nonsingular, then $A A^{T}$ is also nonsingular. Be sure to include enough words of explanation.
6) (10pts) What does it mean to say that $\langle\mathbf{x}, \mathbf{y}\rangle$ is an inner product? State as much of the definition as you can remember. It has 3 main parts.

Suppose A is a nonsingular 4×4 matrix. Show that $\langle\mathbf{x}, \mathbf{y}\rangle=(A \mathbf{x}) \cdot(A \mathbf{y})$ is an inner product on R^{4} (the dot in the formula is the usual dot product).
7) (5 pts) Use GE to get A into RREF;

$$
A=\left(\begin{array}{ccc}
i & 1 & i \\
1 & 0 & 2
\end{array}\right)
$$

8) (14pts) a) Is the following matrix diagonalizable ? Justify your answer. Hint: one idea is to look at the rank of $A-2 I$.

$$
A=\left(\begin{array}{lll}
2 & 1 & 0 \\
0 & 2 & 0 \\
0 & 0 & 3
\end{array}\right)
$$

8b) Find the eigenvalues of A^{-1}.
9) (10pts) Choose ONE:
A) If $\left\{\mathbf{x}_{\mathbf{1}}, \mathbf{x}_{\mathbf{2}}, \ldots \mathbf{x}_{\mathbf{k}}\right\}$ are eigenvectors of A, from distinct eigenvalues, then they are L.I.
B) Prove that $\operatorname{det}(A B)=\operatorname{det} A \operatorname{det} B$. To save a little exam time, you can assume both matrices are nonsingular.

Bonus: (5pt) Suppose A is diagonalizable. Find a simple formula for $\operatorname{det}\left(e^{A}\right)$, such as $e^{\operatorname{det}(A)}$ or $e^{\operatorname{tr}(A)}$, and justify it.

