1) [ 10 pts ] Suppose $A$ is a $6 \times 7$ matrix and its column space is spanned by $\mathbf{a}_{\mathbf{1}}$ and $\mathbf{a}_{\mathbf{3}}$, which are linearly independent (LI). Find the dimension of $N(A)$ and explain briefly.
2) [15 points] Choose ONE of these to prove (you can use the back).
a) If an nxn matrix $A$ is diagonalizable, then it has $n$ L.I. eigenvectors.
b) Prove that $N(A)=R\left(A^{T}\right)^{\perp}$.
c) Prove that $\operatorname{det} A B=\operatorname{det} A \operatorname{det} B$. To save time, you can assume they are both nonsingular.
3) $[15 \mathrm{pts}]$ Let

$$
A=\frac{1}{3}\left(\begin{array}{cc}
1 & 8 \\
2 & 7 \\
2 & -2
\end{array}\right) \quad \text { and } \quad \mathbf{b}=\left(\begin{array}{l}
1 \\
0 \\
1
\end{array}\right)
$$

a) Use the Gram-Scmidt process to find an orthonormal basis for $R(A)$.
b) Factor A into QR (with the usual meaning).
c) Use b) to solve the least squares problem $A x=b$ quickly.

Show all your work, but you can check some of your steps against some of these: $\left\|a_{1}\right\|=1,\left\|a_{2}\right\|=3.6,<a_{1}, a_{2}>=2, a_{2}-2 a_{1}=\left[\begin{array}{cc}2 & 1\end{array}-2\right]^{T}$, and $a_{1}-2 a_{2}=\left[\begin{array}{ll}-5 & -4\end{array}\right]^{T}$.
4) [20 pts] True-False. You can assume the matrices are square unless stated otherwise.
$A$ and $A^{2}$ always have the same rank.
$A$ and $A^{T}$ always have the same eigenvalues.
If $A$ is nonsingular then $A B$ is nonsingular.
If $A$ is normal then $A$ is unitary or Hermitian.
If $A$ is unitary then $A^{2}$ is unitary.
If $A$ represents a rotation then $A$ is an orthogonal matrix.
Every $3 \times 3$ matrix has at least one real eigenvalue.
If $A$ is a $7 \times 5$ matrix, then $A x=0$ has nontrivial solutions.
If $A$ is singular, then its nullity is positive.
If 0 is an eigenvalue of $A$, then $A$ is singular.
5) [ 15 pts: HW 6.3.23] For maximal credit (and less work) you are to find the eigenvalues of the matrix $A$ below without computing $p(\lambda)$. For less credit, you can use $p(\lambda)$ instead.
a) It is a transition matrix for a Markov process. Predict one eigenvalue from that.
b) Compare the rows of $A$ to determine a second eigenvalue. Explain.
c) Compute the trace of $A$. Use that to determine a third eigenvalue.

$$
A=\left(\begin{array}{ccc}
\frac{2}{4} & \frac{1}{3} & \frac{1}{5} \\
\frac{1}{4} & \frac{1}{3} & \frac{2}{5} \\
\frac{1}{4} & \frac{1}{3} & \frac{2}{5}
\end{array}\right)
$$

6) $[10 \mathrm{pts}]$ Let

$$
\mathbf{z}_{\mathbf{1}}=\frac{1}{2}\binom{1+i}{1-i} \quad \text { and } \quad \mathbf{z}_{\mathbf{2}}=\frac{1}{\sqrt{2}}\binom{i}{-1} \quad \text { and } \quad \mathbf{z}=\binom{2+4 i}{-2 i}
$$

a) Show $\mathbf{z}_{\mathbf{1}}$ and $\mathbf{z}_{\mathbf{2}}$ form an orthonormal set in $C^{2}$.
b) Write the vector $\mathbf{z}$ as a linear combination of $\mathbf{z}_{\mathbf{1}}$ and $\mathbf{z}_{\mathbf{2}}$.
7) $[10 \mathrm{pts}]$ a) Find the eigenvalues of $A$. Factor $A=X D X^{-1}$.
b) Can $A$ also be diagonalized by a unitary matrix ? Either do it, or explain why this is impossible.

$$
A=\left(\begin{array}{ccc}
7 & 0 & 0 \\
0 & 2 & 1 \\
0 & 15 & 4
\end{array}\right)
$$

8) [5pt] Find a basis of $N(A)$.

$$
A=\left(\begin{array}{llll}
1 & 1 & 0 & 1 \\
1 & 0 & 3 & 1 \\
2 & 1 & 3 & 2
\end{array}\right)
$$

Remarks and Answers: The average was about 63, including almost everybody now, with high scores of 93 and 91 . The average scores were pretty normal on all problems, except maybe for the $46 \%$ on 6 ) and $80 \%$ on 8 ). I am still collecting late HW scores, etc, and have not yet set a scale for the semester.

1) Based on the rank-nullity theorem, $7-2=5$.
2) See the text. Most people chose (c).
3) a) $\mathbf{q}_{1}=\mathbf{a}_{1}$ and $\mathbf{q}_{2}=\frac{1}{3}[2,1,-2]^{T}$.
b) Based on the work in (a), $r_{11}=1, r_{12}=2, r_{22}=3$.
c) $\hat{x}=[1,0]^{T}$.
4) FTFFT TTFTT
5) $1,0,7 / 30$. The trace is $37 / 30$ (only 3 people added the fractions correctly and got this right).
6) a) Check both norms and $\perp$. For example, check that $\mathbf{z}_{\mathbf{1}}{ }^{H} \mathbf{z}_{\mathbf{2}}=0$.
b) $\mathbf{z}=4 \mathbf{z}_{\mathbf{1}}+2 \sqrt{2} \mathbf{z}_{\mathbf{2}}$. Show some work, such as $\mathbf{z}_{\mathbf{1}}{ }^{H} \mathbf{z}=4$. It is also OK to set-up and solve a linear system, but since the basis is orthonormal, the inner product method (from Ch.5) is OK and faster.
7) a) $p(\lambda)=(7-\lambda)\left(\lambda^{2}-6 \lambda-7\right)$, so $\lambda=7,7,-1$. The $\mathbf{x}_{i}$ for 7 are $[1,0,0]^{T}$ and $[0,1,5]^{T}$, and for -1 it is $[0,1,-3]^{T}$ (as usual, other answers are possible for these). The rest, about $X D X^{-1}$, is now easy. In hindsight, I didn't explicitly ask you to compute $X^{-1}$. If you did so correctly, I gave 2 extra points.

It is not diagonalizable by $U$ because it is not normal (you can easily check that $A^{H} A \neq A A^{H}$, see Ch.6.4). I also gave credit for saying that the eigenvectors you found are not orthogonal, though this is not completely convincing (what if someone else found different ones which ARE orthogonal ? With the repeated eigenvalue, this idea requires more explanation.).
8) $[1,0,0,-1]^{T}$ and $[-3,3,1,0]^{T}$ (other answers are possible).

