1) Let $S=\operatorname{span}\left\{(1,2,3,0)^{T},(1,0,0,1)^{T}\right\}$, a subspace of R^{4}. Find a basis of S^{\perp}. For about 5 points extra credit, find an ONL basis of it.
2) [15 pts] Suppose a Markov process has the transition matrix A below. a) Find its characteristic polynomial and eigenvalues the usual way (without using part b below).

$$
A=\left(\begin{array}{ll}
1 / 4 & 1 / 2 \\
3 / 4 & 1 / 2
\end{array}\right)
$$

b) Suppose the process starts with $\mathbf{x}_{\mathbf{0}}=[1,0]^{T}$. Find the steady state probability vector \mathbf{x}. You can use the factorization below to save some time (you can get λ_{2} from part a). If you use a shortcut (eg, you do not compute a limit), explain it.

$$
A=\left(\begin{array}{cc}
2 & 1 \\
3 & -1
\end{array}\right)\left(\begin{array}{cc}
1 & 0 \\
0 & \lambda_{2}
\end{array}\right)\left(\begin{array}{cc}
1 / 5 & 1 / 5 \\
3 / 5 & -2 / 5
\end{array}\right)
$$

3) [15pts] a) Find the matrix rep A of $L: R^{2} \rightarrow R^{2}$, where L is a 45 degree CCW rotation.

3b) Find A^{100}. Either show your work or explain your reasoning.
4) You are given three data points for (x, y) : $(0,0),(1,7)$ and $(2,2)$. You may put these into a chart if you like. Find the best least squares fit by a linear function, $y=c_{0}+c_{1} x$.
5) [20 points] Answer True or False:

Every 2 x 2 matrix has at least one real eigenvalue.
If A and B are similar nxn matrices, then $\operatorname{det} \mathrm{A}=\operatorname{det} \mathrm{B}$.
Every square matrix A can be factored, $A=Q R$, as an orthogonal matrix times a nonsingular upper triangular matrix.

If A is a 7 x 5 matrix, then $A x=0$ has nontrivial solutions.
If A is nxn and singular, then its nullity is positive.
If $L: R^{2} \rightarrow R^{2}$ is linear, and $\mathbf{x} \perp \mathbf{y}$ in R^{2}, then $L(\mathbf{x}) \perp L(\mathbf{y})$.
If 0 is an eigenvalue of A , then A is singular.
Every real orthogonal matrix is unitary.
Every diagonal matrix is normal.
Every Hermitian matrix is diagonalizable.
6) Let V be the space of 2×2 symmetric real matrices. Find a basis of V and the dimension of V.

7a) Find a basis for $N(A-2 I)$, where $A=\left(\begin{array}{lll}2 & 0 & 0 \\ 0 & 2 & 0 \\ 1 & 0 & 1\end{array}\right)$.
7 b) Use 7 a to decide whether A is diagonalizable, and justify your answer (this should not require much more calculation).
8) Choose ONE: [or, for less credit, you can prove the $\operatorname{det} A B$ theorem instead]:
A) State and prove the Spectral Theorem (6.4.4).
B) State and prove Thm 5.6.3 about solving Least Sqs problems, given $A=Q R$.
C) Use induction to prove that if a square A has 2 identical rows then $\operatorname{det} A=0$.

Bonus [5 pts]: Give an example of an inner product on the space P_{3} that does not involve an integral.

Remarks and Answers: The high scores were 110, 107 and 101, very nice! The average was about 70 out of 100 , not counting 3 scores below 20 . The results were mostly good on all the problems except for problem $6(43 \%)$. I will not set a scale for the final. I have not done that yet for the semester.

1) Compute $N(A)$ using GE, where the first row of A is $(1,2,3,0)$, etc. I get $N(A)=$ span $\left\{(-1,0.5,0,1)^{T},(0,-1.5,1,0)^{T}\right\}$, but there are other answers. For the EC, use GSO.
2) $p(\lambda)=\lambda^{2}-3 \lambda / 4-1 / 4=0, \lambda_{1}=1, \lambda_{2}=-1 / 4$.

2b) The fastest answer is to take the first eigenvector, the first column in the $S D S^{-1}$ above, but "normalize" it to be $[2 / 5,3 / 5]^{T}$. With slightly more work, you can get the same thing from $\lim _{n \rightarrow \infty} A^{n} \mathbf{x}_{\mathbf{0}}$.

3a) is below. 3b) is -I (because $A^{8}=I$ and $A^{4}=-I$).

$$
A=\sqrt{1 / 2}\left(\begin{array}{cc}
1 & -1 \\
1 & 1
\end{array}\right)
$$

4) $y=2+x$. See Ch. 5.3 (and a similar question from the previous exam.)
5) FTFFT FTTTT
6) See Ch. 3 and HW. Many people tried to answer with column vectors, but V contains matrices and the basis should be a list of matrices, too.

$$
\left(\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right)\left(\begin{array}{ll}
0 & 0 \\
0 & 1
\end{array}\right) \quad\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right)
$$

7a) $[1,0,1]^{T},[0,1,0]^{T}$

7b) Yes, we get 3 LI eigenvectors.
8) Most people chose A and did pretty well.

Bonus [5 pts]: Two people used $\left\langle a x^{2}+b x+c, d x^{2}+e x+f\right\rangle=a d+b e+c f$.

