Linear Algebra, Examples of Proofs, mostly from HW 2

$$
5 / 15 / 02
$$

Ex 1 - True or False? If $A B=O$ then either $A=O$ or $B=O$.
Answer: False. Proof: We need an example (as in 1.3-20) and expect that A and B should be "almost zero". Some trial and error leads to these two, and it's easy to check they work.

$$
A=\left(\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right) \quad B=\left(\begin{array}{ll}
0 & 0 \\
0 & 1
\end{array}\right)
$$

Ex 2 [see 1.3-25] Proof: Assume that A and B are symmetric $n x n$ matrices. The "if and only if" sentence has 2 separate parts that we handle one-at-a-time.

Part 1): Assume that $A B=B A$ (we'll prove $A B$ is symmetric by showing $(A B)^{T}=$ $A B$). So, $(A B)^{T}=B^{T} A^{T}=B A=A B$ (done). The first " $=$ " is a theorem, the second is because A and B are symmetric, and the third is the hypothesis of Part 1.

Part 2): Assume that $(A B)^{T}=A B$ (we'll prove $A B=B A$). It's similar to Part 1): $A B=(A B)^{T}=B^{T} A^{T}=B A$ (done). [I'll let you explain each " $=$ " this time].

Ex 3 [1.4-15] Proof: Assume B is singular. So, part a) of Thm 1.4.3 is false for B. So, part b) [and c)] is false too. So, $B \mathbf{x}=\mathbf{0}$ has a nontrivial solution. Multiplying by A, we see that $A B \mathbf{x}=\mathbf{0}$ has the same nontrivial solution. This means Part b) of thm 1.4.3 is false for $A B$. So is a), so $A B$ is singular.

Ex 4 [1.4-21a] Proof: The assumptions are that $A=E_{k} E_{k-1} \ldots E_{1} B$ and that $B=F_{k} F_{k-1} \ldots F_{1} C$, where the E s and F s are all elementary.
[These equations are carefully based on the definition of "row equivalent". Don't try to write this proof without the Es. And the second equation has a new list of matrices, so use another letter, like my Fs, there. Back to the proof...]

So, $A=E_{k} E_{k-1} \ldots E_{1} F_{k} F_{k-1} \ldots F_{1} C$, which shows A is row equivalent to C. Done.
[1.4-21b]. By Thm 1.4.3, both are row equivalent to I. By Part a) above [and 1.4-20], they are row equivalent to each other.

