FAQs on HW
 Fall 2003

3.1.3 - You need to prove the closure properties and the eight "axioms". The closure properties are pretty obvious from the definitions in the exercise. The axioms usually require a calculation. For example, to prove A2, you can set $\mathbf{x}=\mathrm{a}+$ bi (because that's what it means to say \mathbf{x} is in V). Likewise, set $\mathbf{y}=\mathrm{c}+$ di. Then calculate, like this (and justify briefly):

$$
\begin{aligned}
\mathbf{x}+\mathbf{y} & =(a+b i)+(c+d i) \\
& =(a+c)+(b+d) i \\
& =(c+a)+(d+b) i \\
& =(c+d i)+(a+b i) \\
& =\mathbf{y}+\mathbf{x}
\end{aligned}
$$

For A2, you'll set $\mathbf{z}=(\mathrm{e}+\mathrm{fi})$, and do a similar calculation. Etc.
3.1.7 - "Unique" means "there's only one". To show that $\mathbf{0}$ is unique, you assume that there are two vectors $\mathbf{0 a}$ and $\mathbf{0 b}$ that both satisfy axiom A3. Then the goal is to show that there really aren't two different $\mathbf{0}$ vectors. That is, show that $\mathbf{0 a}=\mathbf{0 b}$. Assumption A3 is that, for all \mathbf{x} in $V, \mathbf{x}+\mathbf{0 a}$ $=\mathbf{x}$ and $\mathbf{x}+\mathbf{0 b}=\mathbf{x}$. You can plug in $\mathbf{0 a}$ or $\mathbf{0 b}$ for \mathbf{x}, and get up to four useful equations from A3.

Now, can you combine some of these to prove the goal ?
3.2.10 - You can rephrase any of these to the question - "is $A \mathbf{x}=\mathbf{b}$ always consistent (no matter what bis)?" You can always use GE, as in Example 11, page 140.

But there are usually shortcuts! If you have 3 vectors in R^{3}, you can use the determinant to decide if the matrix is nonsingular. If you have 4 vectors, you can probably throw one out, and still have 3 that span R^{3} (just check that det is not zero), which means the 4 span it, too. If you have only 2 vectors, they won't span R^{3}, but this is hard to explain quickly until later in Ch 3. For now, mimic Ex 11 (C). Be sure to explain your conclusions.
3.2.16 - Of course, $R^{1}=R$ is just the set of real numbers, and it is a very simple vector space. Vectors are just real numbers this time. This
exercise shows R^{1} has only two subspaces. Of course, you do not have to prove the definition of subspace this time, because we are told that S is one. You can assume that $0 \in S$ (but say it). There are two standard ways to prove an "or" conclusion, as we need to do in this exercise. The reasoning is pretty similar either way, but Option 1 is a little shorter.

Option 1: Assume S is a subspace and that $S \neq\{\mathbf{0}\}$ (which means there is some nonzero $v \in S$) and then prove $S=R$. To show that, we need to show every $x \in R$ must also be in S. Find a scalar $\alpha \in R$ such that $\alpha v=x$ (there is a simple formula for it). Why does that show $x \in S$?

Option 2: You can use cases instead. Then,
Case 1: Assume S contains no nonzero numbers. [which means $S=$ $\{\mathbf{0}\}$ and ends this case].

Case 2: Assume S contains a nonzero number v. [and show $S=R$, much like you did in Option 1].
3.2.18 - This is not too hard, but you need to know the definition of subspace well, and use it several times. Recall that $v \in U \cap V$ means $v \in U$ and $v \in V$. You need to show 4 things, starting with $\mathbf{0} \in U \cap V$ (showing the subspace is not empty). Etc.

