Linear Algebra, Hints on HW in Ch. 5.2
 6/6/02

Most people can do HW 5.2.1 by imitating 5.2, Example 4. Some of the other HW in Chapter 5.2 is about bases of S and S^{\perp}. The key idea is to use a matrix A to do this. Usually you can choose A so that $S=R(A)$ and then $S^{\perp}=R(A)^{\perp}=N\left(A^{T}\right)$. So, you find $N\left(A^{T}\right)$ just like in problem 1. But each problem is a little different:

5.2.2 - Here $A=x$.

5.2.3 - Here, they choose A for you so that $S=R\left(A^{T}\right)$ (instead of $S=R(A)$ as I suggested above). Once you sort out 2a), you can use it to do 2 b .
5.2.5a - This is very similar to the previous problems, once you decide what S is, and you find a spanning set for it.
5.2.10 - Good luck! This is an exercise in logic. It should only take about 2-3 sentences.
5.2.13 - See the other Hint page for this one.

Not assigned, but similar: 5.2.4 - Try it yourself, and then compare with my answer below:

Find a basis for S^{\perp}. This follows my outline above perfectly. Set $A=\left(\mathbf{x}_{\mathbf{1}}, \mathbf{x}_{\mathbf{2}}\right)$ so that $S=R(A)$, and $S^{\perp}=R(A)^{\perp}=N\left(A^{T}\right)$. Finding a basis is now a Ch. 1 problem. We solve $A^{T} \mathbf{x}=\mathbf{0}$ where,

$$
A^{T}=\left[\begin{array}{cccc}
1 & 0 & -2 & 1 \\
0 & 1 & 3 & -2
\end{array}\right]
$$

This is already in RREF (Thank you, Dr. Leon!), so we set $x_{4}=\alpha$ and $x_{3}=\beta$, and get $x_{2}=2 \alpha-3 \beta$ and $x_{1}=-\alpha+2 \beta$. Factoring out the Greek, as usual, we find that the nullspace is spanned by $\left[\begin{array}{llll}-1 & 2 & 1\end{array}\right]^{T}$ and $\left[\begin{array}{llll}2 & -3 & 1 & 0\end{array}\right]^{T}$. These are LI, so they are a basis of S^{\perp}. Check that they are orthogonal to the basis vectors of S.

