
Notes on HW Exercises
Summer A 2002

These hints and answers may help with some of your HW this semester,
mostly HWs 3,4,5. The Student guide on reserve in the FIU library has
much more. Try each problem pretty hard on your own before looking for
hints. Most of the ”proofs” below are just hints - so write them up more
carefully, and fill in the gaps.

I have copied a lot of this from old (paper)handouts written for the 5th
Edition, but have tried to update the exercise/page numbers. Also, I am
not sure all of these were actually assigned this term - if not, I’d suggest
trying them anyway.

1.4-15. Assume that B is singular. By a theorem in the book (1.4.3), it
is false that Bx = 0 has only the trivial solution. So, there is a nonzero
vector x so that Bx = 0. Multiplying both sides by A shows that Cx = 0,
too. So it is false that this (second) system has only the trivial solution.
So, C is singular (by the same theorem).

2.1-10 [also done in class]. [I’ll omit the basis step (the 2x2 case) and the
intro to the I-step.] Let A be an (n+1)x(n+1) matrix with two identical
rows. For simplicity, let’s assume they are at the top (otherwise, multiply
by type I’s to move them to the top). Compute det (A) using the 3rd row.
det (A) = a31A31 + . . ., where A31 = det M31 (etc). Notice that M31 is an
nxn matrix, and its top two rows are equal (they come from the top two
rows of A). By the IH, A31 = det M31 = 0 (likewise, for A32, etc). So, det
A = 0.

2.2-13. Taking det’s, we see that det A is not zero, so A is nonsingular, and
we can use A−1 in the rest of the proof. We multiply it by AB = I to get
B = A−1. We know A−1A = I (by defn), so BA = I.

2.2-17. Finding the det of a very large matrix (say 100x100) can take some
time, even with a computer. A practical question is to choose a method
that takes relatively few steps. This problem shows A LOT of steps are
required in our main method, using cofactors - because 100! is BIG.
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Expect to use induction, since this involves det’s. I’ll only do the
addition part here, since the other part is similar.

Basis step: A 1x1 matrix requires 0 additions, which agrees with the
formula n!− 1 when n = 1.

Induction step: Let k ≥ 1 and assume the formula is correct for kxk
matrices. Let A be a (k+1)x(k+1) matrix. Then using row 1,

detA = a11A11 + . . . + a1k+1A1k+1

which has k additions in it. But finding each cofactor (such as A11)
also requires k!−1 additions (by the I.H.). So, the total is k+(k+1)(k!−1).
This equals (k + 1)!− 1, so we’re done.

Remark: I suppose you could also count the plus signs that occur in
“(−1)i+j” (in the definition of Aij). But this is apparently not the author’s
intention (play around with some specific examples, as a check, before you
start a long proof).

If you didn’t get the multiplication part yet, try again!

3.3 - 12. Given a1v1 + a2v2 = 0; solve for v1 [But what if a1 = 0?
Also, reverse this logic for ”part 2” of the proof].

3.3 - 13. If a nontrivial combo of the subset were zero, a similar non-
trivial combo (all new coeff’s are zeros) of the big set would be zero. [try
to write this idea out with formulas].

3.3 - 16. Since v is a lin combo of the others, we get v = a1v1+. . . anvn.
Bring the v over to the right, and the new eqn shows 0 is a nontrivial combo
of the vectors.

3.4 - 11. This is like the nullspace examples with α and β in them (see
pg. 119). Factor out the a and b and get a(x2 + 2) + b(x + 3). So each
element of S is a lin combo of x2 + 2 and x + 3.

3.5.9a) (read ex.7 first) The first column comes from the coefficients in
2x − 1, so it is (2,−1)T . The second column is (2, 1)T . [If the other basis
had been written “[1, x]”, then the entries of col 1 would be reversed, to
(−1, 2)T , and the same for col 2].
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3.5.9b) Take the inverse of the previous answer.

3.6.9a) idea: the columns have the same dependencies in A and in B.
or faster, you could use thm 3.6.5, but that’s almost cheating).

3.6.9b) No (see lecture ex. (from year 2000 - and 2002 also?), where
col.1 of A is not in Col(U)).

3.6.19b) See the proof of Thm 3.6.1. 19a) can be explained almost the
same way, or we can think of the columns of C as the rows of its transpose.
The notation isn’t perfect, but basicly: Col(AB) = Row ((AB)T ) = Row
(BT AT ) is a subspace of Row (AT ) = Col(A). 19c) From (b) we see rank(C)
is at most rank(B). By (a) and by Thm. 3.6.5, we see rank(C) is at most
rank(A). Done.

4.1.20) If L is one-to-one and L(0) = 0 (given), then L(x) = 0 can’t
happen for any x 6= 0. So, Ker(L) contains only 0. Conversely, suppose L
weren’t one-to-one. So, L(v1) = L(v2). So, L(v1 − v2) = 0. So, v1 − v2 6=
0 is in Ker(L).

4.3-9) Get S−1A = T and plug in to get B = S−1AS.

4.3-11) det B = det S−1 det A det S = det A. (see thm 2.2.3 and HW
2.2-6).

5.1-9) Find the scalar projection of [1, 1, 1]T on [2, 2, 1]T as in Example
5.

5.2-13a) Ax is in R(A) by definition. Since AT (Ax) = 0, it is also
in N(AT ). Since these are orthogonal subspaces (thm 5.2.1), this implies
Ax = 0 (remark 1, on page 241). So x ∈ N(A). This gives 13b).

13c) By 13b), they have the same nullity. They also have the same
width, so by thm 3.6.4, they have the same rank.

13d) The assumption implies rank(A) = its width. By 13c), rank (AT A
) = its width. For a square matrix, this implies nonsingular (see Cor.3.6.3).
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