Correction to the Lecture Notes, Dec 4, 2006
Background: We had just diagonalized a rotation matrix A. It was not Hermitian, but it was normal (to be explained on Dec 6) so we were still able to find two eigenvectors which formed an orthonormal basis for C^{2}. So, A was diagonalizable by a unitary matrix U. We had gotten to:

$$
A=\left(\begin{array}{cc}
0 & -1 \\
1 & 0
\end{array}\right) \quad \sqrt{2} U=\left(\begin{array}{cc}
i & i \\
-1 & 1
\end{array}\right) \quad D=\left(\begin{array}{cc}
-i & 0 \\
0 & i
\end{array}\right) \quad \text { and } \quad A=U D U^{H}
$$

Example: For practice with the idea of orthonormal basis, let's compute the coordinates of $\mathbf{x}=[1+i, 2+i]^{T}$ w.r.t. this basis (the columns of U). According to Thm 5.5.2, the first coordinate is

$$
\left.c_{1}=<\mathbf{x}, \mathbf{u}_{\mathbf{1}}\right\rangle=[-i,-1]\binom{1+i}{2+i} / \sqrt{2}=(-1-2 i) / \sqrt{2}
$$

Likewise, $c_{2}=<\mathbf{x}, \mathbf{u}_{\mathbf{2}}>=3 / \sqrt{2}$. We should check that $\mathbf{x}=c_{1} \mathbf{u}_{\mathbf{1}}+c_{2} \mathbf{u}_{\mathbf{2}}$ (see Thm 5.5.2):

$$
c_{1} \mathbf{u}_{\mathbf{1}}+c_{2} \mathbf{u}_{\mathbf{2}}=\left[(-1-2 i)\binom{i}{-1}+3\binom{i}{1}\right] / 2=\binom{1+i}{2+i}=\mathbf{x}
$$

Good!

