
MAA 3200 Dec 7, 2010
Final Exam and Key Prof. S. Hudson

1) Let f(x) = x2 on R. Let E = [−1, 4]. a) Find f(E). b) Find f−1(E).

2) Show by induction that if n > 0 is odd, then 2n + 3n is a multiple of 5.

3) Suppose x ∈ A ⊂ R is also an upper bound of A. Show that x = lub A (which is the
same as supA).

4a) State the Bolzano-Weierstrass theorem, about bounded sets in R. 4b) Show by example
that it fails in the metric space Q of rational numbers. [If you just can’t remember this
theorem, you can replace it by the Nested Interval Theorem, in both a) and b), for partial
credit].

5) Give examples of closed sets Sn ⊂ R2 such that ∪∞n=1Sn = B1(0) (the open unit ball).

6) Give ONE of these textbook proofs:

a) Every Cauchy sequence in R converges.

b) R is not countable.

7) Prove that lim(x,y)→(2,3) 2xy = 12 using the usual metric on R2. [For partial credit, you
can state the definition of limit needed here, and the formula for the usual metric on R2].

8) Suppose {xn} is increasing and bounded in R. Show that the sequence converges (to
its lub).

9) [20 pts] Answer True or False:

[temporarily missing - let me know if you need these]

Bonus) Suppose E ⊂ R2 is closed and x 6∈ E. Prove that infa∈E ρ(x, a) > 0.

Remarks and Answers: The average was about 60/100, with a high of 85. The unofficial
scale should be similar to that of Exam 3. The results were OK on most problems, except
8), and with a slight dip on page 2. Not many people got 7) completely right, but most
got partial credit by following the directions.

Good luck in your future courses ! I’ll probably be in touch with some of your
instructors, such as in MAA 4211, and hope to hear how that goes. You are welcome to
visit me in the Spring term.

1) f(E) = [0, 16], f−1(E) = [−2, 2]. Of course, this refers to the pre-image of the set, not
to the inverse of the function (see Velleman approx Ch 5).
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2) Basis Step: Let n = 1 and note that 21 + 31 = 5 is a multiple of 5.

Ind Step: Assume n is odd and that 5| 2n + 3n. Since n+ 2 is the next odd integer, ETS
5| 2n+2 +3n+2. [If this modification of induction bothers you, then you can set n = 2k+1,
and use induction on k, but it is the same thing].

2n+2 + 3n+2 = 4 · 2n + 9 · 3n = 4 · [2n + 3n] + 5 · 3n

and both summands are multiples of 5. Done.

3) We must show x is the least ub. Suppose y < x. Since x ∈ A this implies y is not an
upper bound of A. So, no upper bound of A can be smaller than x. Done.

4b) Let S = {1, 1.4, 1.41, . . .} ⊂ Q, which we discussed often. It has no limit point in Q.

5) Let Sn = B1−1/n(0), a closed ball slightly smaller than the unit ball. We did several
examples just like this, but more in R1 than R2. Several people had the idea [mostly] but
gave examples of intervals in R1.

6) See text.

7) Scratch work: Let A = |2xy− 12| = |2xy− 4y + 4y− 12| ≤ |2y(x− 2)|+ 4|y− 3|. We’ll
want this < ε and will want some bound such as |y| < 4 (since y ≈ 3 this seems plausible,
if δ < 1, or so).

Proof: Let ε > 0. Set δ = min {ε/16, 1}. Assume ρ((x, y), (2, 3)) < δ. Note that
|x − 2| ≤ ρ((x, y), (2, 3)) < ε/16, and similarly, |y − 3| ≤ ρ((x, y), (2, 3)) < ε/16. Also,
|y−3| < 1 which implies, by algebra, that |y| < 4. Combining all this, we get A < ε, done.
[I’ve left several small gaps for you to fill in].

8) Let L =lub {xn}, so ETS xn → L. Let ε > 0. Since L − ε < L it is not an upper
bound, and ∃xN > L− ε. If n > N then xn ≥ xN (by increasing) so L− ε < xn ≤ L (by
transitivity and that L is an upper bound). This implies |xn − L| < ε, done.

I don’t think there are many other ways to do this one. It is false in Q, so you have
to use some kind of completeness theorem, such as the lub axiom [some people tried using
Cauchy-implies-Converges instead, but didn’t quite make this idea work). If you use the
lub idea, don’t forget that L is the least ub; you can’t write a proof without that.

B) Since Ec is open, x is an interior point of that, and ∃ε > 0 such that Bε(x) ⊂ Ec. The
contrapositive tells us that if a ∈ E then ρ(x, a) > ε. So, ε is a lower bound for these
numbers, and the inf [glb] is ≥ ε > 0.
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