
MAA 3200 Dec 4, 2018
Final Exam Prof. S. Hudson

The universal set is the real numbers, if not specified.

1) Short answer (20 pts total). Show some work for each, but don’t prove your answers.

a) Let xn = (−1)n
3 + 3 + 3(−1)n

n . Find lim supxn.

b) Give an example of a set S and a 1-1 function f : S → S which is not onto.

c) Give an example of two functions f, g which are uniformly continuous on a set S ⊆ R
such that fg is not uniformly continuous there.

d) Let Ix = (x− 1
x , x + 1

x ) for x ∈ [1, 3]. This family covers the set S = [0.5, 3.1]. Find a
finite subcover.

e) Define the relation x < y on R as done in class and in the online notes (using xn, etc).

2) [20 pts total] Circle TWO of these and prove them.

a) The union of any two compact sets is compact (use the definition).

b) If f and g are continuous on R then f + g is too (use the ε method).

c) limx→3 4x2 = 36 (use the ε method).

d) For each n ∈ N , let Sn = {p2−n| p ∈ N} ∩ (π,+∞). Let xn = min Sn. Show that xn
is a Cauchy sequence of rational numbers. Is [xn]∼ bigger, smaller or equal to π (explain
briefly, but do not prove this last part).

3) [15pts total] Use these relations on the set N to answer a,b and c below. Do not use
other examples which are not listed here. If two of these are possible (for part (a) for
example), you can just give one. If none of these work, say so - otherwise, you can answer
with just one letter and you do not have to explain.

Let S = {(m,n)| m3 − 3m = n3 − 3n}. For example, (0, 2) ∈ S. [typo corrected, from
(0,3), on 12/5/18]

Let T = {(n, n)| n is even}.
Let mUn mean m|n (m divides n).

Let mV n mean m+ n > 3.

a) Give an example of a relation above that is symmetric and anti-symmetric.

b) Which of the relations above is an equivalence relation ?

c) Which is a partial order ?

1



4) Short answer [15 pts total]. In the definitions you may have to introduce a few variables
such as x, S, ε, etc.

a) Define boundary point. Let S = Q ∩ (2, 3] ⊆ R. Find the boundary points of S (viewed
as a subset of R, as usual).

b) Define accumulation point. Let S = Z ∪ (2, 4) ⊆ R. Find the accumulation points of S.

c) Define interior point. Let S = {(x, y) ⊆ R2| xy ≥ 0. Using either of the metrics from
class, find the interior points of S.

5) [20 pts] Answer True or False. You do not have to explain.

¬(¬P → ¬Q)⇔ ¬P ∧Q
(∃k ∈ Z, 2k = 6) ∧ (∃j ∈ Z, 3j = 13)

If R is a reflexive relation on A = {2, 3}, then R is transitive.

If S,R are relations on a set A, then Dom (S ◦R) = Dom (R)

Thomae’s function is continuous at every rational number in (0, 1).

∃!x ∈ R, (x2 − 9 = 0 ∧ (3− x)3 > 3)

A ⊆ B iff P (A) ⊆ P (B).

If A ⊆ C, and B ∩ C = ∅, then A ⊆ Bc.
If f : R→ R is continuous and A ⊆ R, then f−1(A) is equinumerable with A.

The set S = {(x, y) ⊆ R2| xy ≥ 0} is open.

6) [10 pts] Choose one textbook proof. State the theorem more precisely if needed.

a) Every Cauchy sequence of real numbers converges.

b) If f is continuous on R, then the pre-image of every open set is also open.

c) The intermediate-value theorem.

d) If a sequence is monotone and bounded then it converges.

Bonus [about 4-8 pts]: This is a theorem which we did not cover in class, called the Nested
Interval Theorem. Let In = [an, bn] be non-empty closed intervals in R. Assume they are
nested, meaning In+1 ⊆ In for n = 1, 2, 3, . . .. a) Prove that ∩∞n=1In is not empty. b) Give
an example to show this is false for open intervals. c) Give another example to show this
is false in Q (with closed intervals).

Remarks and Answers: The average was 68 with high scores of 98 and 91. The results
were lower on the short answer problems 3 and 4 (approx 50%) and higher on the textbook
proof, problem 6 (over 90%). I do not set a separate scale for the final exam, only for the
semester total.

1a) 10/3. The last term approaches zero and the first terms have a repeated combined
max of 10/3.
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1b) One example is S = N and f(n) = n+1. Since 0 is not in the range, this is not onto. I
also accepted the slightly obscure but equivalent answer f = σ (referring to the definition
of N). There are many examples, but in all of them S has to be infinite.

1c) f(x) = g(x) = x with S = R. Again, there are many other answers.

1d) Ix with x = 1, 2, 2.5 and 3 works (partly because 1
2.5 + 1

3 > 3− 2.5). If you don’t want
to think so hard, let x = 1, 1.01, 1.02 . . . 3.0 instead.

1e) ∃N, ∃ε > 0 (in Q) if n ≥ N then xn + ε < yn. See the online notes for the context.

2) Most popular was (c), then (b), then (a). Nobody chose (d).

The idea of (a) is simple, to take the union of two finite subcovers.

Most people who chose (b) did OK with the triangle inequality and the ε/2 steps, but
there were many gaps. Ideally your proof should include phrases such as - Fix a ∈ R (and
this comes before the ε > 0 step), Let δ =min (δ1, δ2), and a sequence near the end like
|(f(x) + g(x))− (f(a) + g(a))| ≤ . . . ≤ ε.

For (c), you can set δ = min (1, ε/28), for example. The most common gap was an
explanation of |x+ 3| < 7.

Part (d) was a simplified version of an assigned exercise about R.

3) a) T, b) S, c) U. The results were a bit low, maybe because small logical mistakes
mattered. The comment that (0, 2) ∈ S was a hint that S is not anti-symmetric. Notice
that T not reflexive, but it is contained in the identity relation, so it is symmetric and
anti-symmetric. Divisibility is a standard example of a partial order.

4) See the text for the definitions (which need to be precise). For the rest, with some
examples which were not required;

a) [2, 3]. Ex: 2 ∈ ∂S because every (2− ε, 2 + ε) contains points in S (such as 2.0001)
and in Sc (such as 2).

b) [2, 4]. Ex: 2 is one, because every (2−ε, 2+ε) contains points in S (such as 2.0001).

c) Int (S) = {(x, y) ⊆ R2| xy > 0. Ex: P (3, 0) ∈ ∂(S) so it is not an interior point.
Every Bε(P ) contains points in S (such as (3, 0.001)) and points in Sc (such as 3, -0.001)).
This also shows the last TF in problem 5 is False.

Often the difference between open and closed comes down to the difference between
> and ≥ in a defining formula, though this is a rather superficial note, and maybe not
very reliable.

5) TFTFF TTTFF For 4, consider S = ∅. For 9, consider the constant function f(x) = 1.

6) The most popular choice was (a) , then (b), and the results on both were good.

Bonus: a) Only one student made progress on this, but they did a great job. Outline of
proof: The sequence an is bounded and monotone, so it converges to some L. Then explain
that ∀n, an ≤ L ≤ bn, so L is in the intersection. Done. The student used the BW.Thm.
which is not really needed. Notice the similarity with our other existence proofs; you first
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have to construct L somehow, usually using some previous existence theorem, and then
”justify it”.

b) In = (0, 1/n).

c) In = {x ∈ Q+ : |x2 − 2| ≤ 1/n}.
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