Name

Show all your work and explain your reasoning. Don't use your own paper, a calculator or book. You may ask for extra paper or for clarifications. Assume the universal set is \mathbf{R} unless noted. Most of the problems are worth 10 points each.

1) [20pts] Answer True or False: You don't have to explain.

The set of all polynomials is denumerable (countable).
If R and S are relations on A then $(R \cap S)^{-1}=(R)^{-1} \cap(S)^{-1}$.
If $f: A \rightarrow B$ then f^{-1} is a relation and its domain is B.
If $f: A \rightarrow B$ and B is a proper subset of A (so $B \neq A$) then f is not 1-1.
If $A \subseteq R$ and $f(x)=\chi_{A}(x)$, then $f^{-1}(\{1\})=A$.
Z_{5} is a field.
Z_{8} is a field.
Every convergent sequence in R is bounded and Cauchy.
If $\lim \inf a_{n}=\limsup a_{n}=L$ then $\lim a_{n}=L$.
A finite set in a metric space M is always closed.

2a) Define the set P of positives in Q, using the usual $[(\mathrm{p}, \mathrm{q})]$ notation.
b) List the properties that P should have, for Q to be an ordered field.
c) Is Q an ordered field? (just answer yes or no)
3) Choose ONE:
A) If S is open in a metric space M, then S^{\prime} is closed.
B) If $A \subseteq B$ in M then $\bar{A} \subseteq \bar{B}$.
4) Choose ONE:
A) Every Cauchy sequence converges.
B) Addition on R commutes (using definitions, facts about Q, and Cauchy sequences).
5) Choose ONE:
A) Prove or disprove: If $f: A \rightarrow B$ and $S, T \subseteq A$ then $f(S \cap T)=f(S) \cap f(T)$.
B) $\operatorname{lub}(S \cup T)=\max ($ lub S, lub $T)$, assuming they exist.
C) $\lim a_{n} b_{n}=\lim a_{n} \lim b_{n}$, assuming they exist.
6) Prove that $\sum_{k=1}^{n} k(k+1)=n(n+1)(n+2) / 3$ for $n \geq 1$, using induction.
7) (5 pts each) Give examples -
a) A set $S \subseteq R$ that is both open and closed.
b) A sequence with $\lim \inf a_{n}=0$ that does not converge.
c) A set $S \subseteq Q$ that shows Q is not complete.
d) A counterexample to the Nested Interval Theorem if the I_{n} are allowed to be open intervals.
8) Let S be the relation $\{(x, y):|x| \leq|y|\}$ on \mathbf{R} (the reals). Give a definition of each word below, and state whether it applies to S. No proof required.
a) transitive (def? y / n ?)
b) reflexive (def? y/n?)
c) symmetric (def? y / n ?)
d) antisymmetric (def? y/n?)
e) partial order (def? y/n?)

BONUS [5pts]: Let $A=\{1,2,3, \ldots n\}$ and let $B=\{0,1\}$. How many functions map A onto B ?

