
MAA 3200 Dec. 10, 2003
Final Exam and Key Prof. S. Hudson

The average score was about 52/100, including 2 scores over 90, about 9 in [40, 90],
and 5 below 40. The average scores were especially low on problems 2, 4, 6 and 7.

1) Prove that
∑n

k=1 k(k + 1) = n(n + 1)(n + 2)/3 for n ≥ 1, using induction.

Answer: Basis: Set n = 1 and check: 2 = 2. Induction Step: Let n ≥ 1 and assume the
statement is true. Add (n + 1)(n + 2) to both sides and get

∑n+1
k=1 k(k + 1) = n(n + 1)(n +

2)/3 + 3(n + 1)(n + 2)/3 = (n + 1)(n + 2)(n + 3)/3. This proves the statement for n + 1.

2) Suppose that E ⊂ R is a nonempty bounded set and sup E 6∈ E. Prove there is a
strictly increasing sequence {xn} in E such that xn → sup E.

Answer: Let sup E = s. We will construct a strictly increasing sequence in E such
that s− 1/n < xn < s, which implies xn → s. By the approximation theorem, there is an
x1 ∈ E such that s−1 < x1 ≤ s. Actually, xn < s, since s 6∈ E. Let n > 1 and assume that
xn−1 has been defined successfully. By the same reasoning, there is an xn ∈ E such that
max {xn−1, s− 1/n} < xn < s. This process defines a sequence that is strictly increasing,
with s− 1/n < xn < s, as desired. The Squeeze theorem shows that xn → s.

This kind of proof requires some planning at the start. You need to stop and think
about how to construct the sequence xn. It is likely you’ll use an existence theorem
(repeatedly) to do that, and hopefully the “sup E” reminds you of the approximation
theorem. The inequality in that theorem might then remind you of the Squeeze theorem,
and give you the idea of setting ε = 1/n. To make xn strictly increasing requires a
modification of this basic idea. This was HW problem 2.3.2.

3) [20pts] Answer True or False: You don’t have to explain.

Every bounded sequence has a convergent subsequence.

If limsup xn ≤ liminf xn = K ∈ R , then xn converges to K.

limsup an + bn = limsup an + limsup bn

If R is a symmetric relation on A then R ◦R ⊆ R.

There is a bijection f : (0, 1) → (0, 1].

N is equinumerable with Q.

If F is an ordered field, then F is isomorphic to R.

(P ∨Q) ∧ (¬P ∨ ¬Q) is a contradiction.

∀ε > 0,∃δ > 0,∀x ∈ R, 0 < x < δ → 0 < 2x < ε

If A ⊆ R and f(x) = χA(x), then f−1({1}) = A.
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Answer: TTFFT TFFTT

4) Choose ONE:

A) State and prove the Extreme Value Theorem.

B) State and prove the Nested Interval Theorem.

C) Prove that every sequence has a monotone subsequence.

Answer: Parts A) and B) are in the text, and are on the review sheet. For C), define the
nested sequence of sets, Tn = {xn, xn+1, . . .}. There are two cases;

1) Suppose one of the Tn does not contain its supremum (so it does not have a greatest
term). Then there is an increasing subsequence xnk

inside that Tn. [The proof resembles
that of problem 2 above. Just be sure to make nk > nk−1].

2) Otherwise, each of the Tn contains a greatest term. Let xn1 = max T1. Let xn2 =
max Tn1+1 ≤ max Tn1 = xn1 . Continue in this manner, to get a decreasing (nonincreasing)
subsequence.

5) [20pts] Recall that a ≡ b (mod m) means m|(a − b), and the equivalence classes are
denoted Zm. For this problem, you can use well-known formulas like x < x+1, 1/7 ∈ Q\Z,√

2 ∈ R \Q, x2 ≥ 0, etc, without proof.

a) Prove this relation is symmetric on Z.

Answer: Assume a ≡ b (mod m). So, m|(a− b). Since b− a = (−1)(a− b), this implies
m|(b− a), so b ≡ a (mod m).

b) Addition and multiplication can be defined on Z5 such that Z5 is a field. Show that Z6

(operations defined the same way) is not a field.

Answer: Since [2][3]=[6]=[0], the element [2] does not have a multiplicative inverse (and
explain why, or check the 6 options).

c) Explain why the complex numbers cannot be made into an ordered field, no matter how
< is defined on it.

Answer: Since i2 = −1 < 0, this would contradict the theorem that in an ordered field
∀x, x2 ≥ 0 [or, explain that trichotomy fails for x = i and y = 0].

d) Explain why Q is not a complete ordered field (This doesn’t have to be a careful proof,
but include the definition of complete in your answer).

Answer: If Q were complete, every nonempty bounded set E would have a supremum.
But let E = {x : x2 < 2}. In R the supremum would be

√
2, but that’s not in Q. Any

rational number is either too big or too small to be the supremum [a careful proof of that
might use density and the fact that x2 is increasing on R].
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6) Suppose f : R → R is continuous at a, and f(a) > M for some M ∈ R. Prove there is
an open interval I containing a such that f(x) > M on I.

Answer: Apply the sign-change lemma 3.28 to g(x) = f(x) − M , which is positive and
continuous at a. This is basically HW problem 3.3.4. You can also use an ε approach as
in the proof of the lemma.

7) Give an example of each -

a) A continuous function f : R → R and an open set A ⊂ R such that f(A) is not open.

Answer: Let f(x) = x2 and A = (−1, 1), so f(A) = [0, 1) [or let f be a constant function
and A = R, or etc].

b) A sequence with lim inf an = 0 that does not converge.

Answer: Let an = (−1)n + 1. Or, write it out as 0, 2, 0, 2, 0, . . ..

8) Prove: If f : A → B and S, T ⊆ A then f(S ∪ T ) ⊂ f(S) ∪ f(T ).

Answer: See the key to Exam II.

BONUS [5pts]: Choose at most ONE:

A) Prove that B1(0) is an open subset of R2. You can assume that distance in R2 satisfies
the triangle inequality. I’d prefer that you do not include a picture, except maybe to guide
yourself.

B) Prove one step of trichotomy on R: that x < y and x > y cannot both be true (use the
x = [{xn}] notation, and known results in Q).

Answer to A: Let x ∈ B1(0). ETS x is an interior point. Since |x| < 1 we can set
ε = 1 − |x| > 0. ETS Bε(x) ⊆ B1(0). Let y ∈ Bε(x) which means |y − x| < ε. By the
triangle inequality, |y − 0| ≤ |y − x| + |x − 0| < ε + (1 − ε) = 1. This proves y ∈ B1(0).
Done.

Remark: After the 2nd sentence, you could draw a picture of the ball B1(0) with the
point x somewhere inside. Then draw a tiny ball Bε(x) that is centered at x and stays
inside the larger ball. The largest possible radius is ε = 1 − |x|, which explains the third
sentence of the proof. The rest of the proof is ‘just checking’.

Such a picture is very useful as a guide in writing the proof, or even in explaining it,
but don’t rely too heavily on it. Don’t draw conclusions from it that you can not justify.
Pictures can be deceiving (at best, such a picture represents a single example which might
- or might not - be typical). Note: the algebraic proof given above works in R3 and R4

and other settings, where a picture is impossible.

Of course, there are times when ‘a picture is worth a thousand words’ and we’ll use
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them with some caution. [For example, cardinality proofs with arrows, the proof that
sinx/x → 1, etc).

Answer to B: We did something like this in class using xn’s and ε’s. See the Morash
book on reserve for more about proofs like this one.
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