Name

Show all your work and explain your reasoning. Don't use your own paper, a calculator or book. You may ask for extra paper or for clarifications. Assume the universal set is \mathbf{R} except that in 3 b and 5 it is $N=\{0,1,2, \ldots\}$.

1) [15pts] Use truth tables to determine which statements are tautologies, contradictions or neither. [Label each statement below].
a) $(p \wedge \neg q) \vee(p \rightarrow q)$
b) $(p \rightarrow q) \vee(p \rightarrow \neg q)$
c) $(p \wedge \neg q) \wedge(p \rightarrow q)$
2) [20pts] Prove that if $A \subseteq B-C$ and $A \neq \emptyset$ then $B \nsubseteq C$.
3) [15pts] One of these is false. Find it and disprove it by giving a counterexample.
a) $\forall a>0, \forall b>0, \exists c>0,(c<a \wedge c<b)$ (where $U=R)$.
b) If $a b \mid c$ and $a c \mid b$ then $a=1$ and $b=c$ (where $U=N$).
c) If $A \subseteq B, a \in A$ and a and b are not both elements of B then $b \notin B$.
4) [15pts] Choose ONE to do:
A) Disprove $\lim _{x \rightarrow 2} 2 x=0$ using the definition.
B) Prove that $\exists x,(p(x) \vee q(x))$ is equivalent to $(\exists x, p(x)) \vee(\exists x, q(x))$. As in the HW, you may assume a similar equivalence involving \forall and \wedge.
5) [15pts] Prove that x is even if and only if x^{2} is even.
6) [20pts] Answer True or False: You don't have to explain.
$\forall x>0, \exists!y>0, x-2 y=0$
If $A-C \subseteq B$ then $A-B \subseteq C$.
If $a<b$ and $a c \geq b c$ then $c<0$.
$\exists!x\left((x-4)^{2}=9\right)$
$\forall x \geq 0, \exists y \geq 0, x+y=0$
