The average was about 70 . You can use the original scale to find your approximate letter grade.

1) ANSWER: Taut/Taut/Contradiction
2) Prove that if $A \subseteq B-C$ and $A \neq \emptyset$ then $B \nsubseteq C$. Brief Proof: Since $A \neq \emptyset$, there is an $x \in A$ [optional details: $\neg(A=\emptyset)$ implies $\neg(\forall x, \neg(x \in A))$, which implies $\exists x, x \in A$]. So, $x \in B-C$. So, $x \in B$ and $x \notin C$. This shows that $\forall x, x \in B \rightarrow x \in C$ is false, and that $B \nsubseteq C$.

Note 1: It is not good to write "Let x be arbitrary" in this proof because we are not proving a " $\forall x, p(x)$ " sentence here. The first sentence in the proof above introduces x the correct way (see 7, page 306).

Note 2: It is OK to assume $B \subseteq C$, to get a contradiction, but we still have to introduce x the same way as above.

3a) $\forall a>0, \forall b>0, \exists c>0,(c<a \wedge c<b)$. True: pf (not required): given a and b, set $c=\min (a, b) / 2$.
3b) If $b \mid a c$ and $c \mid a b$ then $a=1$ and $b=c$. This is false [ex: let $a=0, b=1, c=2$].
3c) True [This is ex 3.2.5, page 102].
4) Choose ONE to do:
A) Disprove $\lim _{x \rightarrow 2} 2 x=0$. See the lecture notes for a similar ex: write out the definition, negate it; set $\epsilon=4$ (or less), let $\delta>0$ be arbitrary; let $x=2+\delta / 2$; and check the ' $P \wedge \neg Q$ ' part. Note: every formula should be introduced correctly with a word like "So," or "Assume" or "ETS" to explain its place in the proof. Pay attention to these words in the proofs you read (and write).
B) Prove that $\exists x,(p(x) \vee q(x))$ is equivalent to $(\exists x, p(x)) \vee(\exists x, q(x))$. See the key to the HW, where a list of equivalent statements is given. The brief explanation at the top is necessary - a sequence of formulas alone is not a proof! Do not write "Let x be arbitrary" in this one [see notes to (2) above].
5) This is ex 3.4.2, discussed on pages 122-124. Note: After writing "Assume x is even", you can say "This means $\exists k \in N, x=2 k$ " (or say it in English), which introduces k into the proof. You should not write "Let k be arbitrary" (see the note to (2) again!).
6) Answer True or False:
$\forall x>0, \exists$! $y>0, x-2 y=0$. True: $y=x / 2$ is the unique solution.
If $A-C \subseteq B$ then $A-B \subseteq C$. True (try a proof!)
If $a<b$ and $a c \geq b c$ then $c<0$. False: maybe $c=0$.
$\exists!x\left((x-4)^{2}=9\right)$. False: $x=1$ or $x=7$ (not unique).
$\forall x \geq 0, \exists y \geq 0, x+y=0$. False: if $x=1$ then $y=-1<0$.

