MAA 3200 Exam II

Name

Show all your work and explain your reasoning. Don't use your own paper, a calculator or book. You may ask for extra paper or for clarifications. Assume the universal set is \mathbf{R} unless noted.

- 1) [25pts?] Let $R = \{(a, a), (a, c), (b, b), (b, c), (c, c)\}$ be a relation on $A = \{a, b, c\}$.
 - a) Find the domain of R.
 - b) List the elements of R^{-1} .
 - c) List the elements of R^2 .
 - d) Is R a partial order? (explain).
 - e) Is R an equivalence relation? (explain).
 - f) Is R a function? (explain).

2)[15pts] a) Show that $a \equiv b \pmod{5}$ is an equivalence relation on Z.

b) How many equivalence classes are there in this example? Find at least 3 different equivalence classes.

3)[10pts] Prove or disprove: If $f: A \to B$ and $S, T \subseteq A$ then $f(S \cap T) = f(S) \cap f(T)$.

4) [15pts] Choose ONE:

a) Define Q from Z using ordered pairs and an equivalence relation. Explain briefly (but there's nothing to prove).

b) Suppose $f: A \to B$ and $g: B \to C$ are both onto functions. Then $f \circ g: A \to C$. Prove it is onto.

5) [20pts] Answer True or False: You don't have to explain.
The set of rationals, Q, is denumerable and Q ~ Z.
If R and S are relations on A then (R ∩ S)⁻¹ = (R)⁻¹ ∩ (S)⁻¹.
If f : A → B then f⁻¹ is a relation and its domain is B.
If f : A → B and B is a proper subset of A (so B ≠ A) then f is not 1-1.
If A ⊆ R and f(x) = χ_A(x), then f⁻¹({1}) = A.

6) [15pts] Choose ONE to prove:

a) Let R be a transitive relation on A. Show that $R^n \subseteq R$ for all integers, $n \ge 1$.

b) State and prove the Well-Ordering Principle using strong induction. [assume S has no smallest element and show it is empty].

c) Show that $\lim_{x\to 5} x^2 = 25$ using the definition (with δ etc).

BONUS [5pts?]: Let $A = \{1, 2, 3, \dots n\}$ and let $B = \{0, 1\}$. How many functions map A onto B?