1) Let $R=\{(a, a),(a, c),(b, b),(b, c),(c, c)\}$ be a relation on $A=\{a, b, c\}$.
a) $\operatorname{dom} R=A$.
b) $R^{-1}=\{(a, a),(c, a),(b, b),(c, b),(c, c)\}$.
c) $R^{2}=R$ (this happens with transitive and reflexive $R \mathrm{~s}$).
d) R is a partial order (it has R, T and A).
e) R is not an eq. relation (it fails S , since (a, c) belongs, but not (c, a)).
f) R is not a function (since (a, a) and (a, c) belong).
2) $a \equiv b(\bmod 5)$ is an equivalence relation on Z (done in lecture). There are 5 equivalence classes. For example, $[0]=\{\ldots-10,-5,0,5,10, \ldots\}$. Also, $[1],[2],[3]$ and $[4]$ are OK (but $[5]=[0]$, etc).
3) FALSE - If $f: A \rightarrow B$ then $f(S \cap T)=f(S) \cap f(T)$. Look at examples where f is not $1-1$ and $S \cap T$ is empty, such as: $f(x)=x^{2}$ with $S=(-1,0)$ and $T=(0,1)$. Note: Many plausible math statements are false - that's why we need proofs. If you guessed TRUE, you can prove " \subseteq ", but not the other way (unless you assume f is $1-1$; try it).

4a) Done in class (include a def of $(m, n) \sim(p, q))$ etc. 4b) Suppose $f: A \rightarrow B$ and $g: B \rightarrow C$ are both onto functions. Prove $g \circ f$ is onto. Pf: ETS $\forall c \in C, \exists a \in A, g \circ f(a)=c$. Let $c \in C$. Since g is onto $\exists b \in B, g(b)=c$. Since f is onto, $\exists a \in A, f(a)=b$. So, $g(f(a))=g(b)=c$.

Note on 4b: People who didn't write out the ETS got confused here, and most never correctly introduced the variables. You can't use the fact that f is onto until b has been introduced. So, talk about c first (react to the ETS), then g and b, then f and a.
5) T - The set of rationals, Q, is denumerable and $Q \sim Z$.

T- If R and S are relations on A then $(R \cap S)^{-1}=(R)^{-1} \cap(S)^{-1}$.
F - If $f: A \rightarrow B$ then f^{-1} is a relation and its domain is $B .\left(\operatorname{dom}\left(f^{-1}\right) \subseteq B\right)$.
F - If $f: A \rightarrow B$ and $B \subset A$ then f is not 1-1. (ex: $f(n)=n+1, f: N \rightarrow Z^{+}$).
T - If $A \subseteq R$ and $f(x)=\chi_{A}(x)$, then $f^{-1}(\{1\})=A$.
6ab) Both done in class. 6c) Show that $\lim _{x \rightarrow 5} x^{2}=25$. See Anton's Calculus, for similar exs. Here's a brief pf: Let $\epsilon>0$. Set $\delta=\min (\epsilon / 100,1)$. Assume $0<|x-5|<\delta$, so that $|x-5|<\epsilon / 100$ and $|x-5|<1$. Since $4<x<6$ we get $|x+5|=x+5<11$. So, $\left|x^{2}-25\right|<11 \cdot \epsilon / 100<\epsilon$. Done.

Note: It is wise to use "min" in choosing δ because it gives us two inequalities for $|x-a|$. We need both, because $\left|x^{2}-25\right|$ factors into two parts. Practice more of these with $x^{2}, 1 / x$ etc.

BONUS: Let $A=\{1,2,3, \ldots n\}$ and let $B=\{0,1\}$. There are 2^{n} functions $f: A \rightarrow B$, and only 2 (the constant functions) are not onto. So, $2^{n}-2$.

