Name

Show all your work and explain your reasoning. Don't use your own paper, a calculator or book. You may ask for extra paper or for clarifications. Each problem is 20 points.

1) Short Answer:

Give an example of a number system with additive inverses that is not a field.

Given that $s_{1}=1$ and $s_{2}=1$ and $s_{n+1}=s_{n}+s_{n-1}\left(\right.$ for $n \geq 2$), find s_{8}.

What is the trichotomy property in an ordered field?

Give an example of a sequence that is not bounded, with $\lim s_{n} / n=0$.
2) Answer True or False; do not justify.

In every field, $0<1$.
Z_{5} is a field.
Q is a complete ordered field.
$\forall x, y \in N, s_{x}(\sigma(y))=\sigma\left(s_{x}(y)\right)$.
$s_{2}: N \rightarrow N$ is onto.
Let $U=Q$. If $\left\{s_{n}\right\}$ converges, then it is Cauchy.
The set of all polynomial functions with rational coefficients is countable.

3,4) Choose TWO to prove:
A) Prove that multiplication is commutative in Z. Use the definitions - you may assume anything you need about N.
B) Addition in N is associative. Use induction.
C) < is transitive in N (use the definition of $<$ and basic properties of + and/or \cdot).
D) Suppose that $\left\{s_{n}\right\}$ is a Cauchy sequence with a subsequence that converges to L. Show that $\left\{s_{n}\right\}$ also converges to L.
5) Choose ONE to prove:
A) Suppose that $\left\{s_{n}\right\}$ is a sequence of real numbers and that $s_{n} \leq M$ for all $n \in N$, and that $\lim s_{n}=L$. Prove that $L \leq M$.
B) Show that if A and B are denumerable, then so is $A \times B$.
C) Show that $\lim \left(s_{n}+t_{n}\right)=\lim s_{n}+\lim t_{n}$, (assuming the two on the right exist).

BONUS: Prove

