The average was about $62 / 100$. The True-False was better this time, and the part 5) proofs were good. The proofs for 3) and 4) were weak make sure to get these [and other problems from HW6] right before the final. The proof outlines below may help.
1)a) Z, b) $s_{3}=2$ etc and $s_{8}=21$, c) for each $x \in F$, exactly one is true: $x=0$ or $x \in P$ or $-x \in P, \mathrm{~d}) s_{n}=\sqrt{n}$.
2) FTFTFTT; [In every ordered field, $0<1 . Q$ is an ordered field, but is not complete. $s_{2}(n)=n+2$ misses 0 and 1.]
$3-4 \quad$ A) $[(a, b)][(c, d)]=[(a c+b d, a d+b c)]=[(c a+d b, c b+d a)]=$ $[(c, d)][(a, b)]$. by def'ns and properties of N .
B) See Morash/HW. (This one is a bit harder than A,C,D).
C) Assume $a \leq b$ and $b \leq c$, so $\exists x, y \in N$ such that $a+x=b$ and $b+y=c$. So, $a+x+y=b+y=c$. Since $x+y \in N$, this shows $a \leq c$.
D) Given $\epsilon>0, \exists K, k \geq K \rightarrow\left|s_{n_{k}}-L\right|<\epsilon / 2$. And $\exists N$ such that $n, m>N \rightarrow\left|s_{n}-s_{m}\right|<\epsilon / 2$. Let $k=\max \{K, N\}$. Note $n_{k} \geq k \geq N$. So, if $m \geq N$ then $\left|s_{m}-L\right| \leq\left|s_{m}-s_{n_{k}}\right|+\left|s_{n_{k}}-L\right|<\epsilon / 2+\epsilon / 2=\epsilon$.

5 A) Assume $L>M$ to get a contradiction. Let $\epsilon=L-M$. Use the def'n of limit (with $\epsilon / 2$) to get $s_{n}-L>-\epsilon / 2$. Then add $L=M+\epsilon$ to both sides, to get a contradiction.
B) Draw $A \times B$ as we did for Q, and a path in it.
C) See Goldberg.

