Fall 2003, MAA 3200, Key to HW 2
Here are answers to the 5 problems I chose to grade on HW2 (10 points each, +50 general points). In hindsight, my grading may have been too gentle - the average was about 85 . Feel free to ask about any other HW1 or HW2 problems you still aren't sure about.

Ch. 3.1-10a) They proved the converse of the statement $(Q \rightarrow P)$.
10b) Assume $x \neq 4$ and $(2 x-5) /(x-4)=3$. Then, by algebra, $2 x-5=3(x-4)$, etc, so $x=12-5=7$. Done.

Ch.3.2-2. Proof: Assume $A \subseteq C$ and that B and C are disjoint (so $B \cap C=\emptyset$). Assume $x \in A$. (ets $x \notin B$). Since $A \subseteq C, x \in C$. Since $B \cap C=\emptyset$, we know that $x \in B$ and $x \in C$ cannot both be true. Since $x \in C$, we conclude $x \notin B$.

Another Proof: (almost the same, really). Assume $A \subseteq C$ and that B and C are disjoint (so $B \cap C=\emptyset$). Assume $x \in A$. (ets $x \notin B$). Assume $x \in B$ to get a contradiction. Since $A \subseteq C, x \in C$, so $x \in B \cap C$. This contradicts $B \cap C=\emptyset$. So, $x \notin B$. Done.

Ch.3.3-14a) Assume $a \mid b$ and $a \mid c$. So, by definition, there are integers k and m so that $a k=b$ and $a m=c$. So, $b+c=a k+a m=a(k+m)$. Since $k+m$ is an integer, $a \mid(b+c)$. Done.

Note: you should make the quantification of k and m clear (use a phrase like "there exists"). Don't call them both k. Be sure to mention that k, m and $\mathrm{k}+\mathrm{m}$ are all integers.

Ch.3.4-2) Assume $A \subseteq B$ and $A \subseteq C$. Ets $A \subseteq B \cap C$. Let $x \in A$. Then by definition of $\subseteq, x \in B$ and $x \in C$. So, $x \in B \cap C$, as desired.

Note: The phrase "Let $x \in A$ " is a shortcut, the standard reaction to the "Ets" above. You can also include phrases like " $\forall x, x \in A \rightarrow x \in B$ " in your proofs, but using standard shortcuts will usually make your proofs clearer.

2nd Limit: I did this one in class. One common mistake was to use N
(which s/b used when $x \rightarrow \infty$) instead of δ (which is used in most other limit proofs).

Here are a few more answers to misc HW1 and HW2 problems:
(1st HW2 Limit; not graded) State defn; then - Let $\epsilon>0$. Set $\delta=\epsilon / 3$. Let x be arbitrary, and assume $0<|x-2|<\delta$. So, $|x-2|<\epsilon / 3$. [More Algebra Here] So, $|(3 x+1)-7|<\epsilon$. Done.

Ch.1.3-3d. This says 4 is prime and that $13-8>1$. It has no free variables and is false.

Ch.1.5-4a. Draw a truth table, with columns labeled: $\mathrm{p}, \mathrm{q}, p \leftrightarrow q$ and finally $(p \wedge q) \vee(\neg p \wedge \neg q)$ (and any others as needed). The last column should match the one in Fig. 6 (pg 50).

Ch.2.1-1a. Call the people x and y . Then, $\forall x,[\exists y, F(x, y)] \rightarrow S(x)$. Again, the parentheses are needed. I assumed that "y is a person" is understood, but it is OK to include a phrase like $y \in P$ or $p(y)$, if you want.

