Fall 2003, MAA 3200, Key to HW 2

Here are answers to the 5 problems I chose to grade on HW2 (10 points each, + 50 general points). In hindsight, my grading may have been too gentle - the average was about 85. Feel free to ask about any other HW1 or HW2 problems you still aren't sure about.

Ch. 3.1-10a) They proved the converse of the statement $(Q \to P)$. 10b) Assume $x \neq 4$ and (2x - 5)/(x - 4) = 3. Then, by algebra, 2x - 5 = 3(x - 4), etc, so x = 12 - 5 = 7. Done.

Ch.3.2-2. **Proof:** Assume $A \subseteq C$ and that B and C are disjoint (so $B \cap C = \emptyset$). Assume $x \in A$. (ets $x \notin B$). Since $A \subseteq C$, $x \in C$. Since $B \cap C = \emptyset$, we know that $x \in B$ and $x \in C$ cannot both be true. Since $x \in C$, we conclude $x \notin B$.

Another Proof: (almost the same, really). Assume $A \subseteq C$ and that B and C are disjoint (so $B \cap C = \emptyset$). Assume $x \in A$. (ets $x \notin B$). Assume $x \in B$ to get a contradiction. Since $A \subseteq C$, $x \in C$, so $x \in B \cap C$. This contradicts $B \cap C = \emptyset$. So, $x \notin B$. Done.

Ch.3.3-14a) Assume a|b and a|c. So, by definition, there are integers k and m so that ak = b and am = c. So, b + c = ak + am = a(k + m). Since k + m is an integer, a|(b + c). Done.

Note: you should make the quantification of k and m clear (use a phrase like "there exists"). Don't call them both k. Be sure to mention that k, m and k+m are all integers.

Ch.3.4-2) Assume $A \subseteq B$ and $A \subseteq C$. Ets $A \subseteq B \cap C$. Let $x \in A$. Then by definition of \subseteq , $x \in B$ and $x \in C$. So, $x \in B \cap C$, as desired.

Note: The phrase "Let $x \in A$ " is a shortcut, the standard reaction to the "Ets" above. You can also include phrases like " $\forall x, x \in A \to x \in B$ " in your proofs, but using standard shortcuts will usually make your proofs clearer.

2nd Limit: I did this one in class. One common mistake was to use N

(which s/b used when $x \to \infty$) instead of δ (which is used in most other limit proofs).

Here are a few more answers to misc HW1 and HW2 problems:

(1st HW2 Limit; not graded) State defn; then - Let $\epsilon > 0$. Set $\delta = \epsilon/3$. Let x be arbitrary, and assume $0 < |x-2| < \delta$. So, $|x-2| < \epsilon/3$. [More Algebra Here] So, $|(3x+1)-7| < \epsilon$. Done.

Ch.1.3-3d. This says 4 is prime and that 13 - 8 > 1. It has no free variables and is false.

Ch.1.5-4a. Draw a truth table, with columns labeled: p,q, $p \leftrightarrow q$ and finally $(p \land q) \lor (\neg p \land \neg q)$ (and any others as needed). The last column should match the one in Fig.6 (pg 50).

Ch.2.1-1a. Call the people x and y. Then, $\forall x, [\exists y, F(x,y)] \to S(x)$. Again, the parentheses are needed. I assumed that "y is a person" is understood, but it is OK to include a phrase like $y \in P$ or p(y), if you want.