
MAA 3200, Key to HW 3

As the problems get harder, don’t forget the basics such as -
Remember to state your assumptions clearly.
Each assumption should be based on a valid proof strategy and should
usually be followed by a new ”ETS”.
Explain any unusual or indirect strategy briefly - for example, with a phrase
like ”to get a contradiction”.
If you get really stuck, ask for help.

I graded 3.5.2 and Limit C) for 20 points each, 4.1.5 and 6, 4.2.2a and
2b, for 10 each, and another 20 points overall. If you didn’t try Limit C),
I graded 4.3.9 instead (but with a maximum of 10 points).

3.5.2 - Assume A4B = A\B∪B\A ⊆ A. ETS B ⊆ A. Let x ∈ B. ETS
x ∈ A. Assume that x 6∈ A to get a contradiction (using cases, x ∈ A or
x 6∈ A, is also OK). Then x ∈ B\A ⊆ A\B ∪B\A ⊆ A. This contradiction
proves x ∈ A.

Many people who tried this one never stated their assumptions clearly.
Another common mistake was to focus too much on the definition of A4B,
while ignoring the goal, B ⊆ A. Some people erroneously concluded from
A4B ⊆ A that x ∈ A. This problem was somewhat difficult, and the
average grade on it was fairly low. The next four problems were worth 10
points each and most answers were OK.

4.1.5 - There should be four cases, including the cases (x, y) ∈ A ×D
and (x, y) ∈ B × C.

4.1.6 - |A×B| = mn.

4.2.2a - L−1 ◦L = {(s, t) ∈ S×S | ∃r ∈ R, (s, r) ∈ L and (r, t) ∈ L−1},
which means the students s and t live in the same room, r.

4.2.2b - E ◦ (L−1 ◦ L) = {(s, c) ∈ S × C | ∃t ∈ S, (s, t) ∈ L−1 ◦ L and
(t, c) ∈ E}, which means the student s lives with a student t who is taking
course c.

Limit C) This is a moderately hard problem, but the proof is fairly
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similar to that of Problem B) of HW2, and to the related proof mentioned
in the hint. However this related proof involves n→∞ which means it uses
N instead of δ (compare the two definitions of limit). You should use δ’s
in this proof.

Plan: we can make f(x) arbitrarily close to L and to M , so L and
M must also be arbitrarily close to each other. If L 6= M this wouldn’t
happen.

Proof: Assume the 2 limits are true, and that L 6= M , to get a
contradiction. Let ε = |L−M |. Choose δ1 so that 0 < |x− a| < δ1 implies
|f(x)− L| < ε/3 (δ1 exists since the first limit is true). Likewise, choose δ2

so that 0 < |x− a| < δ2 implies |f(x)−M | < ε/3.
Next we need to introduce an x that makes all this true, so let x =

a + δ/2 where δ = min(δ1, δ2). Check that |x− a| is less than both δ1 and
δ2.

The triangle inequality helps get the contradiction:

ε = |L−M | =|f(x)−M − (f(x)− L)|
≤|f(x)−M |+ |f(x)− L)|
≤ε/3 + ε/3

This contradiction proves that L = M .

Don’t worry too much if you didn’t get this one. Keep trying, and look
for patterns in proofs from the text, lectures and answer keys. For example,
in the proof above:

a) The triangle inequality is used very often with absolute value signs.
Get used to it!

b) Min’s are used a lot, especially to make 2 things happen.
c) If a limit is a given, you’ll probably use it to produce a δ to be used

elsewhere (but first you must introduce a good ε).
d) The smaller you choose your Greek letters, the better.
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Some answers/hints to ungraded problems

3.5.1a: Use cases on this one (or, you can use a tautology instead). Let
x ∈ A ∩ (B ∪ C). So x ∈ A and x ∈ B ∪ C. So, x ∈ B or x ∈ C.

Case 1: Suppose x ∈ B. Then x ∈ A ∩B, so x ∈ (A ∩B) ∪ C.
Case 2: Suppose x ∈ C. Then x ∈ (A ∩B) ∪ C. Done.

3.5.5. [This has 2 parts, and each part has two cases. Here’s one. The
other 3 are fairly similar.] Proof of←: Assume |x−4| > 2. Case 1: Assume
x − 4 > 0, so that x − 4 = |x − 4| > 2. So x > 6. So x + x > x + 6. So
2x− 6 > x. Also 2x− 6 > 0 so that |2x− 6| > x. Done with this case.

3.7.5 Prove that if limx→c f(x) = L and L > 0 then ∃δ > 0 such that
∀x, if 0 < |x− c| < δ then f(x) > 0.

Plan of proof: This is good practice with the definition of limit and with
quantifiers. It might be a good idea to draw a graph or two, including f , c,
L, ε and δ. But, as usual, the proof will finally depend on definitions and
standard proof strategies. Looking over the problem quickly, we see that
we’re going to have to produce a δ somehow.

The assumption limx→c f(x) = L means we can pick a specific ε (like
ε = 5 or ε = L/2 or whatever) and get back a δ ”that works”. [If picking
an ε doesn’t seem right to you, see line 6, page 306, about how to use
∀x, P (x)]. It is not clear yet how to pick ε, so let’s look a little deeper at
what δ does, and at our ultimate goal, f(x) > 0.

This δ promises us an inequality |f(x)−L| < ε. Using algebra to remove
the annoying absolute value signs, we get −ε < f(x)−L < ε. Adding L we
get L− ε < f(x) < L + ε. This inequality implies that f(x) > 0 if ε = L.

This may not be a clear convincing proof yet, but we have a choice of ε
that seems promising, and we can start a careful proof. I am going to leave
some of the routine steps to you.

Outline of the Proof: Assume that limx→c f(x) = L and L > 0. Set
ε = L. The definition of limit implies that there is a δ > 0 so that [fill this
in]. Let x be arbitrary and assume [fill this in]. ETS f(x) > 0. [fill the rest
in]. Done.
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3.7.6 Prove that if limx→c f(x) = L then limx→c 7f(x) = 7L.

Idea of Proof:
Assume: ∀ε1 > 0,∃δ1 > 0 etc
ETS: ∀ε2 > 0,∃δ2 > 0 etc
In this exercise, we’ll get δ1 from the assumption, and (trust me here)

we can set δ2 = δ1. But the ε ’s must be different! We’ll let ε2 be arbitrary.
We could set ε1 = ε2, but it doesn’t work out. The key to picking ε1 is in
this simple algebra:

|7f(x)− 7L| < ε2 ⇔ |f(x)− L| < ε2/7

This suggests setting ε1 = ε2/7. I leave the rest (which should be fairly
routine) to you.

4.1.4a: Again, I suggest cases (see the proof of 4, pg 160). Let (x, y) ∈
A× (B ∪ C). So, x ∈ A and y ∈ B ∪ C. So, y ∈ B or y ∈ C.

Case 1: If y ∈ B then (x, y) ∈ A×B ⊆ (A×B) ∪ (A× C). Done.
Case 2: If y ∈ C, the proof is similar.

4.1.8: It is a little easier to prove the contrapositive because that will
make it easy to introduce elements to discuss: Assume that A and C are not
disjoint (so ∃x ∈ A∩C), and that B and D are not disjoint (so ∃y ∈ B∩D).
Then (x, y) ∈ A × B and (x, y) ∈ C × D. So A × B and C × D are not
disjoint.

4.3.7a: (the → part) Assume R is reflexive on A, and that p ∈ iA.
Then p = (x, x) for some x ∈ A. Since R is reflexive, (x, x) ∈ R, so p ∈ R.
Done.

4.3.9a (very brief proofs): R∩S is reflexive because each (x, x) belongs
to R and to S, therefore to R ∩ S. Same for R ∪ S. Since (x, x) ∈ R, we
get (x, x) ∈ R−1 (from the def of R−1), so yes.

R ◦ S is too: Let x ∈ A. ETS ∃b ∈ A, (x, b) ∈ S and (b, x) ∈ R. Set
b = x. Since (x, x) ∈ R and (x, x) ∈ S, we get (x, x) ∈ R ◦ S.
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