MAA 3200, Key to HW 3

As the problems get harder, don't forget the basics such as Remember to state your assumptions clearly.
Each assumption should be based on a valid proof strategy and should usually be followed by a new "ETS".
Explain any unusual or indirect strategy briefly - for example, with a phrase like "to get a contradiction".
If you get really stuck, ask for help.
I graded 3.5.2 and Limit C) for 20 points each, 4.1.5 and 6, 4.2.2a and 2 b , for 10 each, and another 20 points overall. If you didn't try Limit C), I graded 4.3.9 instead (but with a maximum of 10 points).
3.5.2 - Assume $A \triangle B=A \backslash B \cup B \backslash A \subseteq A$. ETS $B \subseteq A$. Let $x \in B$. ETS $x \in A$. Assume that $x \notin A$ to get a contradiction (using cases, $x \in A$ or $x \notin A$, is also OK). Then $x \in B \backslash A \subseteq A \backslash B \cup B \backslash A \subseteq A$. This contradiction proves $x \in A$.

Many people who tried this one never stated their assumptions clearly. Another common mistake was to focus too much on the definition of $A \triangle B$, while ignoring the goal, $B \subseteq A$. Some people erroneously concluded from $A \triangle B \subseteq A$ that $x \in A$. This problem was somewhat difficult, and the average grade on it was fairly low. The next four problems were worth 10 points each and most answers were OK.
4.1.5 - There should be four cases, including the cases $(x, y) \in A \times D$ and $(x, y) \in B \times C$.
4.1.6- $|A \times B|=m n$.
4.2.2a- $L^{-1} \circ L=\left\{(s, t) \in S \times S \mid \exists r \in R,(s, r) \in L\right.$ and $\left.(r, t) \in L^{-1}\right\}$, which means the students s and t live in the same room, r.

[^0]similar to that of Problem B) of HW2, and to the related proof mentioned in the hint. However this related proof involves $n \rightarrow \infty$ which means it uses N instead of δ (compare the two definitions of limit). You should use δ 's in this proof.

Plan: we can make $f(x)$ arbitrarily close to L and to M, so L and M must also be arbitrarily close to each other. If $L \neq M$ this wouldn't happen.

Proof: Assume the 2 limits are true, and that $L \neq M$, to get a contradiction. Let $\epsilon=|L-M|$. Choose δ_{1} so that $0<|x-a|<\delta_{1}$ implies $|f(x)-L|<\epsilon / 3$ (δ_{1} exists since the first limit is true). Likewise, choose δ_{2} so that $0<|x-a|<\delta_{2}$ implies $|f(x)-M|<\epsilon / 3$.

Next we need to introduce an x that makes all this true, so let $x=$ $a+\delta / 2$ where $\delta=\min \left(\delta_{1}, \delta_{2}\right)$. Check that $|x-a|$ is less than both δ_{1} and δ_{2}.

The triangle inequality helps get the contradiction:

$$
\begin{aligned}
\epsilon=|L-M| & =|f(x)-M-(f(x)-L)| \\
& \leq|f(x)-M|+\mid f(x)-L) \mid \\
& \leq \epsilon / 3+\epsilon / 3
\end{aligned}
$$

This contradiction proves that $L=M$.
Don't worry too much if you didn't get this one. Keep trying, and look for patterns in proofs from the text, lectures and answer keys. For example, in the proof above:
a) The triangle inequality is used very often with absolute value signs. Get used to it!
b) Min's are used a lot, especially to make 2 things happen.
c) If a limit is a given, you'll probably use it to produce a δ to be used elsewhere (but first you must introduce a good ϵ).
d) The smaller you choose your Greek letters, the better.

Some answers/hints to ungraded problems

3.5.1a: Use cases on this one (or, you can use a tautology instead). Let $x \in A \cap(B \cup C)$. So $x \in A$ and $x \in B \cup C$. So, $x \in B$ or $x \in C$.

Case 1: Suppose $x \in B$. Then $x \in A \cap B$, so $x \in(A \cap B) \cup C$.
Case 2: Suppose $x \in C$. Then $x \in(A \cap B) \cup C$. Done.
3.5.5. [This has 2 parts, and each part has two cases. Here's one. The other 3 are fairly similar.] Proof of \leftarrow : Assume $|x-4|>2$. Case 1: Assume $x-4>0$, so that $x-4=|x-4|>2$. So $x>6$. So $x+x>x+6$. So $2 x-6>x$. Also $2 x-6>0$ so that $|2 x-6|>x$. Done with this case.
3.7.5 Prove that if $\lim _{x \rightarrow c} f(x)=L$ and $L>0$ then $\exists \delta>0$ such that $\forall x$, if $0<|x-c|<\delta$ then $f(x)>0$.

Plan of proof: This is good practice with the definition of limit and with quantifiers. It might be a good idea to draw a graph or two, including f, c, L, ϵ and δ. But, as usual, the proof will finally depend on definitions and standard proof strategies. Looking over the problem quickly, we see that we're going to have to produce a δ somehow.

The assumption $\lim _{x \rightarrow c} f(x)=L$ means we can pick a specific ϵ (like $\epsilon=5$ or $\epsilon=L / 2$ or whatever) and get back a δ "that works". [If picking an ϵ doesn't seem right to you, see line 6 , page 306, about how to use $\forall x, P(x)]$. It is not clear yet how to pick ϵ, so let's look a little deeper at what δ does, and at our ultimate goal, $f(x)>0$.

This δ promises us an inequality $|f(x)-L|<\epsilon$. Using algebra to remove the annoying absolute value signs, we get $-\epsilon<f(x)-L<\epsilon$. Adding L we get $L-\epsilon<f(x)<L+\epsilon$. This inequality implies that $f(x)>0$ if $\epsilon=L$.

This may not be a clear convincing proof yet, but we have a choice of ϵ that seems promising, and we can start a careful proof. I am going to leave some of the routine steps to you.

Outline of the Proof: Assume that $\lim _{x \rightarrow c} f(x)=L$ and $L>0$. Set $\epsilon=L$. The definition of limit implies that there is a $\delta>0$ so that [fill this in]. Let x be arbitrary and assume [fill this in]. ETS $f(x)>0$. [fill the rest in]. Done.
3.7.6 Prove that if $\lim _{x \rightarrow c} f(x)=L$ then $\lim _{x \rightarrow c} 7 f(x)=7 L$.

Idea of Proof:

Assume: $\forall \epsilon_{1}>0, \exists \delta_{1}>0$ etc
ETS: $\forall \epsilon_{2}>0, \exists \delta_{2}>0$ etc
In this exercise, we'll get δ_{1} from the assumption, and (trust me here) we can set $\delta_{2}=\delta_{1}$. But the ϵ 's must be different! We'll let ϵ_{2} be arbitrary. We could set $\epsilon_{1}=\epsilon_{2}$, but it doesn't work out. The key to picking ϵ_{1} is in this simple algebra:

$$
|7 f(x)-7 L|<\epsilon_{2} \Leftrightarrow|f(x)-L|<\epsilon_{2} / 7
$$

This suggests setting $\epsilon_{1}=\epsilon_{2} / 7$. I leave the rest (which should be fairly routine) to you.
4.1.4a: Again, I suggest cases (see the proof of $4, \mathrm{pg} 160$). Let $(x, y) \in$ $A \times(B \cup C)$. So, $x \in A$ and $y \in B \cup C$. So, $y \in B$ or $y \in C$.

Case 1: If $y \in B$ then $(x, y) \in A \times B \subseteq(A \times B) \cup(A \times C)$. Done.
Case 2: If $y \in C$, the proof is similar.
4.1.8: It is a little easier to prove the contrapositive because that will make it easy to introduce elements to discuss: Assume that A and C are not disjoint (so $\exists x \in A \cap C$), and that B and D are not disjoint (so $\exists y \in B \cap D$). Then $(x, y) \in A \times B$ and $(x, y) \in C \times D$. So $A \times B$ and $C \times D$ are not disjoint.
4.3.7a: (the \rightarrow part) Assume R is reflexive on A, and that $p \in i_{A}$. Then $p=(x, x)$ for some $x \in A$. Since R is reflexive, $(x, x) \in R$, so $p \in R$. Done.
4.3.9a (very brief proofs): $R \cap S$ is reflexive because each (x, x) belongs to R and to S, therefore to $R \cap S$. Same for $R \cup S$. Since $(x, x) \in R$, we get $(x, x) \in R^{-1}$ (from the def of R^{-1}), so yes.
$R \circ S$ is too: Let $x \in A$. ETS $\exists b \in A,(x, b) \in S$ and $(b, x) \in R$. Set $b=x$. Since $(x, x) \in R$ and $(x, x) \in S$, we get $(x, x) \in R \circ S$.

[^0]: $4.2 .2 \mathrm{~b}-E \circ\left(L^{-1} \circ L\right)=\left\{(s, c) \in S \times C \mid \exists t \in S,(s, t) \in L^{-1} \circ L\right.$ and $(t, c) \in E\}$, which means the student s lives with a student t who is taking course c.

 Limit C) This is a moderately hard problem, but the proof is fairly

