
MAA 3200, Key to HW 6

I graded 2.1.1a, 2.1.6a, 2.2.5 and 2.3.2 for 20 points each, plus 20 overall.
The average was about 70/100.

2.1.1a: Show 3 + 1/n → 3. Proof: Let ε > 0. Choose an integer N > 1/ε
(it exists by the Archimedian Property, but we’ve explained that so often,
I think it can now be omitted). Assume n ≥ N . So, 1/n ≤ 1/N < ε. So,
|(3 + 1/n)− 3| = |1/n| = 1/n < ε and we are done.

2.1.6a: Assume xn → L and yn → L. ETS xn − yn → 0. Let ε > 0.
From the assumptions, we know ∃Nx, n ≥ Nx → |xn − L| < ε/2 and
∃Ny, n ≥ Ny → |yn − L| < ε/2. Let N = max{Nx, Ny}. Assume n ≥ N .
Then |(xn−yn)−0| = |xn−L+L−yn| ≤ |xn−L|+ |L−yn| < ε/2+ε/2 = ε.
Done.

Remark: If you didn’t get full credit for this one, study the organization
of the proof above carefully. There’s not much flexibility. For example, you
can’t write these sentences in another order. Also, you can write out the
definition of xn − yn → 0, as a guide to follow when making the proof.

2.2.1: Try to use the Squeeze theorem in all these, since using the definition
of limit will be messier. For example, 2.2.1d: Prove n/2n → 0.

Proof: Since we know 1/n → 0, ETS 0 ≤ n/2n ≤ 1/n for all large n.
So, ETS n2 ≤ 2n for n ≥ 5. This is Example 6.1.3 in Velleman (it’s an
induction proof).

2.2.5: Let x ∈ R (ETS ∃rn → x). Let n ∈ N . By the density theorem,
there is a rational number rn ∈ In = (x − 1/n, x + 1/n). Since 1/n → 0,
the endpoints of In converge to x. By the Squeeze theorem, so does rn.

Remark: This short proof does require some planning. If you have to
prove a sequence rn exists, then you have to define rn for each n. Often
you’ll use formulas with 1/n in them, and maybe an existence theorem, to
define your rn. Compare with 2.3.2 below.

A picture of a number line might help plan out this proof. Also, I hope
you saw the need for rational numbers near x, and remembered the density
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theorem. Work on making associations like that. Read over each theorem
carefully before trying the HW, and try to decide what it is about.

2.3.2: Let s = supE 6∈ E. We will define xn recursively (I’ll explain why
later). Let x1 ∈ E be arbitrary. Let n ≥ 2 and assume xn−1 ∈ E has been
defined. Set an = max{xn−1, s−1/n}. Note that since xn−1 ∈ E and s 6∈ E
these two points aren’t equal. So, an < s. By the approximation property,
there is a number xn ∈ E such that an < xn ≤ s. Since 0 < s−an ≤ 1/n we
know an → s. By the Squeeze theorem, xn → s, too. Since xn > an ≥ xn−1,
the sequence is strictly increasing. Done.

Remark: If the problem did not require ”strictly increasing”, the proof
would be much simpler, and we could set an = s− 1/n. But since xn must
be related to xn−1, we have to use recursion and be fairly careful.

2.3.11a: We will prove ∀n ∈ N, yn−1 ≤ yn ≤ xn ≤ xn−1, which proves
both sequences are monotone. It also shows both are bounded above by
x0 and below by y0. Then by the Monotone Convergence theorem, they
both converge. To prove the claim, we use induction. I leave the basis step
(n = 1) to you, and begin with the induction hypothesis,

Assume yn−1 ≤ yn ≤ xn ≤ xn−1

ETS yn ≤ yn+1 ≤ xn+1 ≤ xn

which has three parts. For the third, xn+1 = xn(yn + yn)/(xn + yn) ≤ xn

because yn ≤ xn. Similarly, xn+1 = (xn + xn)yn/(xn + yn) ≥ yn. Using
this, we also get yn+1 = √

xn+1yn ≥ yn, which is the first part. Using it
again, we get yn+1 = √

xn+1yn ≤ xn+1 which is the second part. This
completes the induction step, and the proof.

2.3.11b: Square both sides of the definition of yn and take limits to get
y2 = xy, which implies y = x. We know yn < x < xn for all n. So, if we
compute a few terms of each sequence, that should prove the last inequality
of the problem.
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