MAA 3200, Key to HW 7

Here are answers to the problems I graded on HW7. Another 20 points for general care and completeness. The average was about 70/100.
2.4.3 [20pts] Assume $\left\{x_{n}\right\}$ is a Cauchy sequence in N. Let $\epsilon=1 / 2$. So, $\exists N$ such that $m, n \geq N \rightarrow\left|x_{m}-x_{n}\right|<1 / 2$. Since $\left|x_{m}-x_{n}\right|$ is an integer, this means $\left|x_{m}-x_{n}\right|=0$ so that $x_{m}=x_{n}$. So, if $a=x_{N}$ and $n \geq N$, we get $a_{n}=a$ as desired.
2.5.1 [40pts] The liminf and limsup for each part are:
a) 2 and 4
b) -1 and 1
c) -1 and 1
d) $1 / 2$ and $1 / 2$
e) 0 and 0
f) 0 and $+\infty$
g) $+\infty$ and $+\infty$

Special 2abc [20pts]
2a) Done in class $11 / 26 / 03$
2b) Define $[a][b]=[a b]$. So $3 \cdot 3=[3][3]=[9]=[4]=4$ (where the first and last equalities are just notational changes). Since $3 \cdot 2=1$ we see that 2 is the multiplicative inverse of 3 .

2c) Z_{6} does not have multiplicative inverses like Z_{5} does. There is no multiplicative inverse of 3 , because always $3 \mathrm{x}=0$ or $3 \mathrm{x}=3$. [The equation $2 \cdot 3=0$ also shows it is not field, by problem 1].

If there are any other problems you are not sure about, you should ask! Any of these could be on the final. For example, problem 2.4.1 about the sum of 2 Cauchy sequences should be pretty straightforward:

Proof: Assume $\left\{x_{n}\right\}$ and $\left\{y_{n}\right\}$ are Cauchy. Let $\epsilon>0$. So, $\exists N_{x}$ such that $m, n \geq N_{x} \rightarrow\left|x_{m}-x_{n}\right|<\epsilon / 2$. Likewise, $\exists N_{y}$ (etc). Assume $n \geq$ $N=\max \left\{N_{x}, N_{y}\right\}$. Then by the triangle inequality, $\mid\left(x_{m}+y_{m}\right)-\left(x_{n}+\right.$ $\left.y_{n}\right)\left|\leq\left|x_{m}-x_{n}\right|+\left|y_{m}-y_{n}\right|<\epsilon / 2+\epsilon / 2=\epsilon\right.$. So, the sum is Cauchy. Done.

