MAA 3200, Key to HW 1

Here are answers to 5 the problems I chose to grade on HW1 (10 points each, +50 for overall completeness etc). I think the average will be about 70/100.
1.1.1a, $\operatorname{pg12:}(r \vee h) \wedge \neg(h \wedge t)$
1.2.13, $\mathrm{pg} 24: P \vee \neg Q$ is the simplest answer, but anything equivalent is OK .
1.3.3a, pg 32 (5pts): x is bound. It says $19>1$ which is true.
$1.3 .3 \mathrm{~b}, \mathrm{pg} 32$ (5 pts): x is bound but c is free. It says $3 \leq c$.
2.2.5, pg 71: The idea of the hint is to relate \exists to \forall, which we can do using \neg 's. The symmetry of the justifications below is rather interesting!

Proof: The following are all equivalent:

$$
\begin{aligned}
& \exists x(P(x) \vee Q(x)) \text { to } \\
& \neg \neg \exists x(P(x) \vee Q(x)) \text { by double negation } \\
& \neg \forall x \neg(P(x) \vee Q(x)) \text { by theorem on negation of quantifiers } \\
& \neg \forall x(\neg P(x) \wedge \neg Q(x)) \text { by De Morgan's Law. } \\
& \neg[\forall x \neg P(x) \wedge \forall x \neg Q(x)] \text { by the fact in the hint } \\
& \neg \forall x \neg P(x) \vee \neg \forall x \neg Q(x) \text { by De Morgan's Law. } \\
& \exists x, \neg \neg P(x) \vee \exists x \neg \neg Q(x) \text { by theorem on negation of quantifiers } \\
& \exists x, P(x) \vee \exists x Q(x) \text { double negation (Done). }
\end{aligned}
$$

2.3.7, pg 80: If you tried this, you got it. Almost any pair of sets will work. For example, set $A=\{a\}$ and $B=\{b\}$. You can check that $P(A) \cup P(B)$ contains 3 sets, but $P(A \cup B)$ has 4 sets.

