
Supplement for MAA 3200, Prof S Hudson, Fall 2018
Constructing Number Systems

A major goal of this course is to construct the number systems N , Z
and Q, and especially the real numbers R, which play such a central role
in mathematics. We need to understand the properties these systems
have in common and also how they differ. Why is the real number
system the standard choice in courses like Calculus? We can only spend
about a week on this, but it will be good practice with proof-writing,
equivalence relations, partial orders, functions, and an introduction to
Algebra in general.1

Every basic term, such ‘0’, ‘+’ and ‘<’ can be defined precisely.2

Every well-known fact and formula, such as n + m = m + n, can
be proven. I will provide some sample proofs, as time permits, and
welcome any questions about the rest. These web page notes should
be enough to outline the main definitions and sample theorems. You
can also find this material in the optional text by Morash, in much
more detail. I can put it on reserve in our library upon request.

I. Outline of the Construction

A) The natural numbers, N .

1) Define N as a set.
2) Define + on N and prove formulas [like n+m = m+ n, etc].
3) Define nm on N and prove related formulas.
4) Define < on N and prove prove related formulas.

B) The integers, Z, with 4 steps similar to those done in A). We’ll also
introduce subtraction, absolute value, etc.

C) The rational numbers, Q, with steps as in B), plus division, etc.

D) The real numbers, R, with the steps in C), plus completeness, etc.3

The main methods in part A) are recursive definitions and inductive
proofs. In B) we define Z as equivalence classes in NxN . The rest of

1here, Algebra refers to a somewhat advanced study of structures like groups,
fields, vector spaces, etc.

2a possible exception is that we must accept the existence N , at least as a set.
3This involves some basic topology and analysis. I plan to defer most of this until

we have covered Cauchy sequences, maybe in the last weeks of the term. Read over
the main properties of R in Kane, Ch. 2.5, or perhaps in Morash.
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B) goes quickly and is based heavily on A). Likewise, C) builds on B)
and D) builds on C). Completing all these steps would take months, so
we will cover A), B) and C) rather lightly now and focus more on D)
later.

II. Some details of Part A); Constructing N

We want to define N and its binary operations + and · and to prove
some of their properties.4 A binary operation on a set A is a function
f : A × A → A. For example, we are planning to define a binary
operation f(n,m) = n+m.

In the following axiom (a primitive definition of N), the notation
σ(m) refers to the next number after m. So, σ(17) = 18, for example.
Later on, we can say σ(m) = m+ 1, but “+” hasn’t been defined yet.5

Axiom: There is a set N and a mapping σ : N → N such that:
a) σ is 1-1, but not onto; there’s an element 0 ∈ N not in rng (σ). And
b) If S ⊆ N and 0 ∈ S and ∀m ∈ N , (m ∈ S → σ(m) ∈ S) then
S = N .6

The induction method is based on part b), and is the main tool in
proofs about N . The next steps aim to define “+”, using a function
sm(n) (which, in effect, adds m to n). For each m, this function is
defined recursively on n ∈ N .

Thm: ∀m ∈ N there is a unique function sm : N → N such that
a) sm(0) = m and
b) ∀n ∈ N , sm(σ(n) = σ(sm(n)).7

Def: Given any m,n ∈ N their sum is s(m,n) = sm(n); it may also
be written “m+ n”.

4You may enjoy this more by pretending that you have not seen these things
before!

5and neither has ‘1’. We will define 1, but will not bother to define many specific
numbers like 17, etc.

6Notice that this uses the convention that 0 ∈ N . In textbooks that do not use
include 0, the whole presentation of N will vary a bit. However, this is ultimately
a minor issue, which I will ask you to deal with, if you read those books.

7In my 2013 file, Part a) was sm(1) = σ(m). Probably I was following some
book that did not include 0 in N . In this 2018 version, we can set n = 0 in Part b,
and infer that sm(1) = σ(m) (where 1 is defined to be σ(0)).

Part b says m+(n+1) = (m+n)+1 but without using ‘+’ I plan to prove a few
theorems like this one in class, but not in this file. See Morash, etc, if interested in
more proofs.
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Thm: N is closed under addition, and m+n = n+m. [We will state
and prove a few theorems like this, but won’t have time for too many].
The next steps aim to define multiplication recursively on N .

Def: For each m ∈ N let pm : N → N be such that a) pm(0) = 0,
and b) ∀n ∈ N , pm(σ(n)) = pm(n) + m. Define the product (often
written m · n or just mn) by p(m,n) = pm(n).

Sample theorems: mn = nm and m(n+ k) = mn+mk.

Def: a < b means ∃c 6= 0 in N such that a+ c = b.

Thm: If a < b then a 6= b; and ∀c ∈ N, a+ c < b+ c; and < has the
transitive property.

Thm (trichotomy) Given any a, b ∈ N exactly one of these three is
true: a < b, b < a or a = b.

For practice, try proving some of these theorems. I plan to assign
some of this as HW on a separate page. At this point, you may not
be able to prove everything above, but you should understand N well
enough to move on to Z. You should also be getting a feel for what
has to be done in constructing new systems. If you have any questions
at all about N , now is the time ! We can pause for more proofs here if
people are interested.

III. About Z and Q

Our first goal is to define Z as a set.8 With N as a tool, this section
is actually easier than the previous one.

Def: Let A = N × N . Define a relation ∼ on A by: (a, b) ∼ (c, d)
means a+ d = b+ c.

Thm: This is an equivalence relation on A.9

Def: Let Z = A/ ∼ be the set of equivalence classes, and call the
elements of Z integers.

8You might expect definitions of −1,−2, . . . at this point, but the method below
is a little cleaner.

9This was a TF question on Exam I, and is not very hard to prove.
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You can think of [(a, b)] as the integer a− b. For example, (3,5) and
(10,12) are in the same eq. class, and they both correspond to the
element −2 ∈ Z.10

Now, we’ll define + and · on Z.

Def: The sum of two integers is [(a, b)] + [(c, d)] = [(a+ c, b+ d)].
Def: The product of two integers is [(a, b)]·[(c, d)] = [(ac+bd, bc+ad)].

For example, [(3,5)]+[(7,2)] = [(10,7)], which corresponds to the
more familiar -2+ 5 = 3. Notice that [(3,5)]=[(10,12)]. If we use (10,12)
instead of (3,5), to do the sum, do we still get the same answer? Yes,
we get [(17, 14)], which is the same as [(10,7)]. If this could fail, then
the definition above is bad. The next theorem says sums always work
out well, also multiplications.

Thm: These two operations are well-defined.

Thm: There is a unique integer a ∈ Z such that ∀x ∈ Z, a + x =
x+ a = x. We call this integer “0”.

Thm: For each z ∈ Z, there is a unique y ∈ Z such that z + y =
y+ z = 0. We write “y = −z” and call this the additive inverse of z.11

Number systems with nice properties like the ones above get special
labels like groups, rings and fields. Z is not a field because it doesn’t
have multiplicative inverses, but our theorems do imply that Z is a
ring. N is not even a ring, since it doesn’t have additive inverses. You
may learn more properties of groups, rings and fields in an Algebraic
Structures course. Next, we define < on Z using the relation < defined
on N :

Def: Let x = [(a, b)] and y = [(c, d)]. Then x < y means a + d <
b+ c.12.

10This version of Z is ‘not exactly the usual Z’, but the two versions have the
same structure. So, we say that the two versions are isomorphic, and treat them
as the same. We can talk about this more if you like - otherwise I will treat this
as a mere technicality and go on. Similar comments apply to the Q and R that we
will define soon.

To keep this file short, I did not include a separate theorem that N ⊂ Z. It might
be more accurate (but pretty unusual) to say that ‘the Z defined here contains a
subset isomorphic to N ’. Again, this is a technicality.

11We can define substraction now, by x− z = x+ (−z). But this is easy and it
usually gets less attention than addition.

12(a) The formula a + d < b + c is in N , hence already defined. (b) We should
ask whether < is well-defined, as we did for +. The answer is Yes, and there is a
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There are many more simple theorems about Z. Example: if x < y
and 0 < z, then xz < yz. We’ll look at some of these in class or in
HW exercises. Define > as the inverse relation of <. Define ≤ as the
relation = ∪ <.

Lets move on and define Q,13 using Z. It is similar to what we just
did, constructing Z from N . Let A = Z × Z+ and define ∼ on A by:
(p, q) ∼ (r, s) means ps = rq. Let Q = A/ .

Ex: (2, 3) ∼ (4, 6) and both ordered pairs may be thought of as 2/3.
We can now define +, · and < on Q using Z. The definition below is
based on the familiar formulas p

q
+ r

s
= ps+rq

qs
and p

q
· r
s

= pr
qs

.

Def: Let x = [(p, q)] and y = [(r, s)]. Then set x+ y = [(ps+ rq, qs)]
and xy = [(pr, qs)].

Thm: Q is a field, which means the operations defined above satisfy
the field axioms.14.

An ordered field is one with a relation < defined on it, that satisfies
the order axioms. Define x < y to mean y − x ∈ P = {[(p, q)] ∈
Q | pq > 0}, which is the set of positive rational numbers. Theorem
(not proved here): With this definition, Q is an ordered field.

All this makes Q pretty useful, but it is not the most useful field,
because it is not complete (see Kane Ch. 2.5.2 or the definition below).
Later, we’ll discuss why that is a problem, for doing calculus, for ex-
ample. We will eventually resolve this, by defining the better system
R, which is the only complete ordered field. The complex numbers C
form another complete field, also very useful, but it is not an ordered
field.15

Quite a few theorems can be proven directly from the field axioms,
which means we don’t have to prove them all separately for Q and R
and C. Let F stand for any field.

Sample Thm: For all x ∈ F , x · 0 = 0.

theorem for that, but to keep this file short, I will usually treat well-defined as a
technicality, and not mention it every time. (c) For brevity, I omit the definition of
|x| in Z and Q. It is rather important, but easy.

13we will also define + etc on Q. Since all this is much more than one simple
definition, the process is usually called constructing Q.

14Roughly, in a field you can divide, and this has some nice familiar properties.
You can read about fields, and ordered fields in many places, such as Kane Ch.2.5

15the interpretation of complete is a bit different for C, since it is not ordered.
We will not pursue this.
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Sample Thm: If F is ordered then 1 > 0, and if x > 0 then x−1 > 0.
Also, we can define ≤ and |x| the usual way, and then ≤ is a partial
order on F .

Def: An ordered field F is complete if every nonempty set S with
an upper bound has a least upper bound - also known as a supremum.
(See Velleman page 197 or Kane page 35. Lower bounds could be used
instead; they are similar).

Ex: Let F = Q and let S = {x ∈ Q| x2 < 2}. If F were R the lub
would be

√
2, but since that doesn’t belong to F = Q, S has no lub

(proof omitted). So, Q is not complete. It has “holes” at places like√
2. Many theorems, such as the Intermediate Value Theorem, would

fail if this field were used in Calculus instead of R.

Next: We will postpone the construction of R because I consider Chs
3 and 4 of Kane’s book more important, and because we will need the
concept of a Cauchy sequence from Ch. 3.5.7. Using R to learn Cauchy,
and Cauchy to construct R may seem circular. But the Cauchy concept
also makes sense when F = Q, so our presentation will not actually be
circular.

To go on, you should know Ch.2.5 of Kane pretty well - and just
accept for now that it is all true. You do not need to memorize perfectly
the field axioms, but should have good idea of them. For Exam 2, you
should do the HW for this file (from a separate file). You don’t need
to know proofs of every theorem here, but probably should be able to
handle some of the easier ones, or maybe the ones done in class. Know
the basic ideas, definitions and notations in this file.

Summary: Numbers in Z and Q [and later on, R too] are equivalence
classes formed from earlier number systems. Binary operations such
as ‘+’ are functions. Those, and relations such as ‘<’ are defined in
natural ways using previous number systems (and you should know
these definitions). For the first system, N , recursion and induction are
needed. Get comfortable enough with σ, sm and pm to write simple
proofs about N , mostly using induction. Understand the issue of ‘well-
defined’, and at least roughly, ‘isomorphism’.


