MAA 3200 HW on Number Systems; Fall 2018

Here are answers to problems 4, 5 and 6 per a request.

4) Prove that every nonzero element of Q (as defined in class and in the online file) has a multiplicative inverse. You should suggest an equivalence class and justify that it works.

Proof: Let $x \neq 0$ in Q. This means x = [(a, b)] with $a, b \neq 0$ in Z. Let y = [(b, a)]. Then $y \in Q$ because $a \neq 0$. And xy = [(ab, ba)] = 1. So y = 1/x. Done.¹

5) Before defining + on N, we defined (for each fixed $m \in N$) a function $s_m : N \to N$ by:

- a) $s_m(0) = m$
- b) $s_m(\sigma(n)) = \sigma(s_m(n))$

. . . [some remarks omitted, see nzq.pdf] . . . so ETS: $\forall m \in N, \ s_0(m) = m.$

Proof that $\forall m \in N, s_0(m) = m$. We use induction on m.

Basis) Let m = 0. Then $s_0(m) = s_0(0) = 0$ by the definition (part a).

Induction) Fix $m \in N$. Assume $s_0(m) = m$. ETS $s_0(\sigma(m)) = \sigma(m)$.² But $s_0(\sigma(m)) = \sigma(s_0(m)) = \sigma(m)$ by the definition (part b) and the IH. Done.

⁶⁾ Prove trichotomy for < on Z, using trichotomy for < on N. Of course, you will need to use the definition of < on Z and may have to think about what = means for Z. Your proof will probably use cases.³

¹I have assumed the reader is familiar with the definitions of 0 and 1, and that yx = xy. Otherwise a few more steps could be included.

 $^{^{2}}$ I feel this ETS should be included in every induction proof, though this proof is so short, it might be omitted.

 $^{^{3}}$ In hindsight, this exercise is a little simpler than I expected, and cases are not required. I am slightly uncomfortable using the phrase "this means" in a proof, as it often burdens the reader, but in this example it seems clearer than cases would be.

Proof: Let x = [(a, b)], and $y = [(c, d)] \in Z$. By the trichotomy principle in N, either a + d < b + c or a + d > b + c or a + d = b + c (and only one of these is true). By the definitions (of <, etc) this means x < y or x > y or x = y (and only one of these is true). Done.