MAA 3200 HW on Number Systems; Fall 2018

Here are answers to problems 4,5 and 6 per a request.
4) Prove that every nonzero element of Q (as defined in class and in the online file) has a multiplicative inverse. You should suggest an equivalence class and justify that it works.

Proof: Let $x \neq 0$ in Q. This means $x=[(a, b)]$ with $a, b \neq 0$ in Z. Let $y=[(b, a)]$. Then $y \in Q$ because $a \neq 0$. And $x y=[(a b, b a)]=1$. So $y=1 / x$. Done. ${ }^{1}$
5) Before defining + on N, we defined (for each fixed $m \in N$) a function $s_{m}: N \rightarrow N$ by:
a) $s_{m}(0)=m$
b) $s_{m}(\sigma(n))=\sigma\left(s_{m}(n)\right)$
. . . [some remarks omitted, see nzq.pdf] . . . so ETS: $\forall m \in$ $N, s_{0}(m)=m$.

Proof that $\forall m \in N, s_{0}(m)=m$. We use induction on m.
Basis) Let $m=0$. Then $s_{0}(m)=s_{0}(0)=0$ by the definition (part a).

Induction) Fix $m \in N$. Assume $s_{0}(m)=m$. ETS $s_{0}(\sigma(m))=\sigma(m) .^{2}$ But $s_{0}(\sigma(m))=\sigma\left(s_{0}(m)\right)=\sigma(m)$ by the definition (part b) and the IH. Done.
6) Prove trichotomy for $<$ on Z, using trichotomy for $<$ on N. Of course, you will need to use the definition of $<$ on Z and may have to think about what $=$ means for Z. Your proof will probably use cases. ${ }^{3}$

[^0]Proof: Let $x=[(a, b)]$, and $y=[(c, d)] \in Z$. By the trichotomy principle in N, either $a+d<b+c$ or $a+d>b+c$ or $a+d=b+c$ (and only one of these is true). By the definitions (of $<$, etc) this means $x<y$ or $x>y$ or $x=y$ (and only one of these is true). Done.

[^0]: ${ }^{1}$ I have assumed the reader is familiar with the definitions of 0 and 1 , and that $y x=x y$. Otherwise a few more steps could be included.
 ${ }^{2}$ I feel this ETS should be included in every induction proof, though this proof is so short, it might be omitted.
 ${ }^{3}$ In hindsight, this exercise is a little simpler than I expected, and cases are not required. I am slightly uncomfortable using the phrase "this means" in a proof, as it often burdens the reader, but in this example it seems clearer than cases would be.

