
MAA 3200, Fall 2018, Construction of the Real Numbers
see also Ch. 9.3 of Morash, on reserve

This will complete our plan to construct four major number systems
in the order N → Z → Q → R. We have constructed Q and proven or
accepted its familiar properties, that it is an ordered field for example. We
now construct R and discuss its properties:

Thm: R is a complete ordered field (review Kane Ch. 2.5 for the meaning).

Thm: If F is a complete ordered field then F is isomorphic to R.

Again, we will not prove everything, but will include completeness,
density and perhaps trichotomy. The next steps use Cauchy sequences
heavily. We will use some theorems from Kane, which hold in both Q and
R. The exception is the theorem that Cauchy sequences converge (in R but
not in Q). That depended on the Completeness Axiom for R, which we
have not proven yet, so using it now would be circular reasoning. I plan
to go over the basic definitions and the easy properties rather quickly, then
pay more attention to a few selected theorems.

Definitions: Let A be the set of all Cauchy sequences {xn} of rational
numbers. For example, 3, 3.1, 3.14, . . . is in A. This sequence will correspond
to π but so will other sequences in A such as 3, 17, 3.1, 3.14, . . . The first
1000 terms don’t really count. Next, we define an equivalence relation ∼
on A. Let {xn} ∼ {yn} mean lim(xn − yn) = 0 (defined as usual, except
that everything, including ε, is in Q). Now define

R = A/ ∼

So, for example, we will think of π as the equivalence class of the
sequence 3, 3.1, 3.14, . . . (and of the other sequence above). We can regard
a rational number such as 2/3 as a real number defined by a constant
sequence, 2/3 = [{2/3}]. We can define addition by [{xn}] + [{yn}] =
[{xn + yn}]. Notice that {xn + yn} ∈ A because we know Q is closed
under addition and that the sum of two Cauchy sequences is also Cauchy
(the same reasoning works in both Q and R). As usual, one should ideally
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check that + is well-defined, but that is mostly a technicality. The other
operations are similar. For example, [{xn}]·[{yn}] = [{xn ·yn}] with similar
comments. Division requires more thought, but if y = [{yn}] 6= 0, we can
prove that for large enough n we get yn 6= 0 and then x/y eventually makes
sense.

The definition of x < y is a little bit awkward. You might expect
something like xn < yn for all n (or maybe for all large n) but that does
not work out well. For example, 0 < [{1/n}] is false (they are equal), even
though every 0 < 1/n. The correct definition uses a small rational number
ε > 0.

Definition: [{xn}] < [{yn}] means ∃ε > 0,∃N if n > N then xn + ε < yn.

Notice that if x, y ∈ Q then x < y has the same meaning in R as in
Q. You can also check some basics, that if x < y then 0 < y − x and
∃δ > 0, x + δ < y and the transitivity, and so on. We do not have time to
prove all these, but see Morash if interested. Define ≤ as the union of <
and =, and also define least upper bound in the usual way.

Thm (Completeness): If ∅ 6= S ⊂ R has an upper bound M ∈ R then it
has a least upper bound L ∈ R.

Proof: Fix S and M . WLOG S contains a positive number and M ∈ N ,
so that M = [{M}]. By the well-ordering principle, we can assume M is
the smallest upper bound among the whole numbers. We will construct a
Cauchy sequence of upper bounds xn ∈ Q such that L = [{xn}] ∈ R is the
lub of S. Let x0 = M . Let x1 = M − 2−1 if that is an upper bound of S,
otherwise let x1 = M . Repeat; let xn+1 = xn − 2−n−1 if that is an upper
bound of S, otherwise let xn+1 = xn.

Exercise 1: Prove that this defines a Cauchy sequence {xn} ∈ Q.

Exercise 2: Let s ∈ R. Prove that if s ≤ xn for all n, then s ≤ L.

Exercise 3: Prove (perhaps by induction) that xn − 2−n is never an
upper bound of S.

These complete the proof of the theorem. Exercise 1 shows L ∈ R.
Exercise 2 shows L is an upper bound of S. Exercise 3 shows no K < L is
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an upper bound of S (K < L implies ∃ε,K < L− ε and ∃n,K < xn − 2−n,
so K is not an upper bound). So L = lubS.

Thm (Density): Q is dense in R; if a < b in R then ∃q ∈ Q, a < q < b.

Proof: By the Archimedean principle, there is some n ∈ N with 1/n < b−a.
There is some minimal m ∈ Z such that nb ≤ m. Then q = (m − 1)/n ∈
(a, b).

Exercise 4: The previous proof has some small gaps. Fill them (explain
each step as needed).

Exercise 5: Use this theorem to prove that the irrationals are also
dense in R. Hint: it is easy to construct an irrational number between two
rationals such as 3 and 4; for example x = 3 + (4− 3)/

√
2.

These last theorems finally justify our reasoning in several proofs over
the last few months. If time permits, I may also insert a proof of trichotomy
here, or in the last lectures. Here are a few more exercises related to fields
or R, for additional practice.

6) Suppose F is a field and x, y ∈ F and xy = 0. Prove that x = 0 or y = 0.
[Note: if x ∈ F and x 6= 0, then ∃a ∈ F, ax = xa = 1].

7) Prove that + is well-defined on R. (Assume that [a′] = [a] and [b′] = [b].
ETS: [a′] + [b′] = [a] + [b]).

8) Explain why Z6 is not a field.

9) Prove that it is not possible to define < on the complex numbers, to
make it an ordered field. [Assume it is. Use the fact that ∃i ∈ C, i2 = −1,
and trichotomy, to get a contradiction.] Do you think Z5 can be made into
an ordered field? Explain.

10) Prove that the ∼ used to define R is an equivalence relation.

11) Prove that addition is commutative in R (you can assume it is in Q).

12) Prove that < is transitive on R from the definition of <.
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